AD-AL108 367

UNCLASSIFIED

TEL=AVIV UNIV (ISRAEL) OEPT OF FLUID MECHANICS AND ==ETC F/0 20/4

ON THE RELATIONSHIP SETWEEN TRANSITIONAL ANO FULLY TURBULENT SH--ETC (U}

MAY 81 I WYGNANSK] AFOSR=77-3278
AFOSR-TR-81~076% NL




-
H

i ¢
Lol

iy 5

———— MIB

B

|
1i2s flis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS. 1963 A,

=




N

£ -

" AFOSR.TR. 81 -0764 )

ADA108367

/F()S/’ (;gr:;gz;gt/crant Number lEVELf

ON THE RELATIONSHIP BETWEEN TRANSITIONAL AND FULLY TURBULENT
SHEAR FLOW -

I. Wygnanski

School of Engineering
Tel-Aviv University

3! May 1981

Arre?

diwel Scientific Report, 1 March 1980 - 31 March 1981

S

Approved for public release; distribution unlimited.

frepared for ‘ | DT'C
ELECTE

AFOSR Bolling Airforce base, Washington D.C. 20332 DEC 11 1981 ‘

and D
¢ }
EUROPEAN OFFICE OF AEROSPACE RESEARCH AND DEVELOPMENT {/ ‘
London, England , _ . \
'\ St H | 7 \v

7




d

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When nlllQ‘Fnlrn-d)l

' READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 81 -0764 [An-AA0Y3 (']
4. TITLE (and Subtitie) 5 TYPE OF REPORT & PERIOD COVERED
ON THE RELATIONSHIP BETWEEN TRANSITIONAL AND 1 Mar 80 - 31 Mar 81
FULLY TURBULENT SHEAR FLOW ANNUAL

—
6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
I. WYGNANSKI
AFOSR-77-3275

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
DEPT OF FLUID MECHANICS AND HEAT TRANSFER éé‘—‘
TEL-AVIV UNIVERSITY, RAMAT-AVIV 61102F
TEL-AVIV 69978 ISRAEL 2307/A2
t1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA 31 MAY 81
BOLLING AIR FORCE BASE, DC 20332 3. NUMBER OF PAGES
170

14, MANITARILS ASEUrY NAME & ADDRESS(I! different from Controlling Oftice) 15, SECURITY CL ASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Reporb _ "

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difterent from Report)

(X

I\

18. SUPPLEMENTARY NOTES

-~ ’

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
PIPE FLOW
TURBULENT SPOT
PULSATING FLOW
TURBULENTYLOW
LAMINAR FLOW

29- ABSTRACT (Continue an reverse side if necossary and identify by block number)

*Pulsating flow of air in a straight smooth pipe was investigated experimentally.
The period of forcing ranged from O.5sec to 5 sec which resulted in the change
in the non-dimensional frequency parameter QERVQZQ of 4.5 to 15. The intro-
duction of periodic surging had no effect on the time mean quantities. The
present data was compared in detail with the theory of Uchida (1956) in the
laminar flow regime. The time dependent components at the forcing frequency
were presented by the radial distribution of amplitude and phase. An integral—

DD ,"9%™. 1473 Eo0iTioN OF 1 NOV 85 IS OBSOLETE
1 JAN 73 UNCLASSIFIED L+ IQ (ﬂ r)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

e e = AR SRR ot . -

= 4

- a0
LI

e el L2 e e R g R T T R T P W




AN

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

~

‘momentum equation in a time dependent flow requires a force triangle to be

maintained at any instant. The triad of forces are: pressure, inertia and

shear. All terms of the force balance equation were measured independently
providing a good check of data. The measured turbulent characteristics of
the flow, including the RMS values of the velocity fluctuations, Reynolds
stress and short-time power spectra are dependent on the phase of the forced
oscillations. The radial distribution of K}e phase angle of velocity is
qualitatively different in laminar and turbulent flows. In order to explain
this difference the concept of a relaxation time of the turbulent flow was
employed. Transitional flow in a boundary layer is also briefly discussed.

1

Accegsion Yer

S — _
NTIS CRA&I
DTIC TAB 0
Unannounged 0

Justification . _

By
Distributien/ ed

Avatlability Codes
Avail and/or
Dist Special ‘.

A

DTIC

ELECTE]
DEC 11 1981

D

UNCLASSIFIED
SECURITY CLASSIFICATION OF *u'" t AGE(When Data Fr- .

¢ A A TS T

y

<

-
-
-

-
.

3

L Mg %y b
- ?" .,U',:

A < . - 1 P TET T e ¢ :-mrt‘.%



GENERAL INTRODUCTION

The project entitled "On the relationship between Lransitional and
taliy turbulent  shear flow" is concernxl with virious aspects of Lnis
¥

2omplex process.

Research is carried out simultaneously in a wind tunnel where tran-
sition of a laminar boundary layer i3 extensively investigated, in a
pipe, and most recently, a large (wo dimensional chanuel facilily was
added. The ability to compare data obtaincd in different geomelries,
keynolds numbers, and pressure gradients enables us Un lake ndvantage of
the unique properties of each facility and have an overview of Lhe univ-

cersal aspects of the problem.

For example: ‘transition in a boundary layer takes place in a form
of “spot" bounded on one side only, by a solid surface. ‘The spols, thus
grow spatially in all three directions forming complicaled tLlhree di-
mensional  structures. The pressure gradient nver Lhe surface is easily
controlled and may be made to vanish on a flat plate at no incidence,
yel  ‘here 1s no controi over the growth of the Reynolds number and the
local thickness of the boundary layer. In a pipe, on the other hand, a
transitional turbulent structure "a puff" is limited by the diameter of
the pipe and can only grow in the streamwisc direction, the HReynolds
number 1s easily controlled by conlrolling the mass flux but the pres-
sure gradient 1in a given pipe al a f'ixed Re depends on Lhe s ructure of

“he flow, and is thus a dependent variable. Alth~rugh the
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cunsemble-averages turoulent gtructure in transitional pipe flow is axi-
symae* ric,  there {5 1{ttle evidence that this i3 a dominant mnde of the
transition process. The Lwo dimensional channel faciiity was construct-
34 berause 1Y perowvides a link between the boundiory layer and tne pipe
tiow,  Although *nh proeasure gradient tn a channel is a dependent  vari-
able the transitional structure may take 2 form of a boundary-layer-spol
if generated locally by a  point-source-disturbance, or a "puff" (or
"slug") if generated by a twn dimensional disturbance spanning the chan-
nel. tiowever, even three dimensional disturbances set 1in channel-flnow
can only propagate in two directions thus theoretical and experimental

analysis of tne proplem is simpler then in the bLowsiary layer.

The resulting lurbulent flow {n pipes, channels and boundary layers
is of course quite similar. The +viscrus sudlayer, the Iogarithmic
law-of-tne-wall, the mean turbulent Intensitiecs and even the wall-
streaks and large coherent structures are all alike. This implies that
nnly ‘hose features which are common (n all gewelries are of  paramount
tmportance 1in tne final transttion process. The nverall research pro-
Zram on transition al the School of kEngineering in Tel- Aviv was guided
by this view. buring tne CY 1980-1981 work was doue on the tnternal
s'ructure of Lhe poundary layer spot (some of the cxperiments were car-
ried  out at the Universily of Southern California); on the interaction
ol spots and on the elfects of favorable pressure eradient on spots. In
pipe flow, the ax!symmetric mode nf transitinsn was investigated by mak-
ing 8 simultaneous measurements al different uuimuthal locaticns, but

the bulk of Lhis years sclentific reporl 13 concerned with {he pulsating
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pipe flow, The intrnduction of harmonic pulsatfons Lo pipe flow was
proposed by us in 1972 but was not executed because of cxperimental dif-
ficulties and a lack of an adequate data acquisition usystem. The pro-
cram was reestablished in 1978 after the relat icustip betweon puf't's and
s was understood (Hubin, Haritonidis and Wygnanski, 19807, In the
a'tached thesis by L. Shemer, pulsating laminar and turbulent pipe
fiowz are discussed in detail. Thé response of the system which con-
‘ains  a plenum chamber, a piston pump and a pipe to controlled sinosoni-
dual onscillations was investigated, as was the effect of the finite velo-
city of sound on the propagation of disturbances in a long pipe. There
are marked differences belween Llhe siructure of turbulence in a pulsat-
ing pipe flow and in *"steady" fully developed turbulent flow, these
dilferences are assoclated with the memopy of Lthe Liurbulent siructure
and prinl.  again Lo Lhe need of considering relaxalion time in modeling
turbulent flows. A portion of the Lhesis, concerned with tne differ-
ctives  belween laminar and turbulent pulsaling flows and Lhe modeling of
relaxation times using complex variables to dennte phasc relationships,
will pe presented at the 1981 Davis conference on turbulent shiear flows.
The et fects of harmonic pulgsations ou relaminari za! lon of turbulent flow
and on transition Yo turbulence will be considered during Lhe coming

year CY 81=-82.
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ON THE SUBSTRUCTURE IN A TRANSITIONAL SPOT

By L. Wygnanski

Department of Fluid Mechanics and Heat Transfer
School of Engineering
Tel-Aviv University.
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1) INTHQDUCTION

Photographs of transitional boundary layer spots (Gad el Hak
Blackwelder and Riley (1980}, Cantwell, Coles and Dimotakis (1978) and
Matsul (1980)) reveal that the spot contains numerous eddies. In fact
at sufficienlly high Reynolds number, the interior of the spot is indis-
tinguishable visually from the fully developed turbulent boundary layer.
tongitudinal streaks aligned roughly with Lhe direction of streaming
figure prominently in every plan-view pholograph of the spnt and the
boundary layer. Yet, the subtructure within the zpol can not occur en-
tirely al random in view of the universality nf ihe shape of the 9gpol,

and its linear growth in the spanwlise and streamwise dlrections.

Ensemble avaraged data, conditioned on the pertutbation generating
the spot, does not reveal a dominant structure within the spol itselr
(Wygnanski, Sokolov and Friedman (1976), Canlwell, Coles and Dimotakis
(1978)). Consecutive 3poils may uiffer slightly frem one to ancther in
thelr shape and their celerity which results in desynchronization »f the
acquisition process and masks the internal structure deduced from the
averaged data. Thus the velocity fleld reconsiructed from ensegble
averaged data would lead one to believe thal the spot consists of a sin-
gle large coherent eddy. The apparent eddy, howover, dnes nnt  scale
correctly with any cnaracteristic boundary layer leng'h-scale because

the spol can becomes as large as the facility in which 1t is generated,
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Although the overall dynamics of the spol is of some practical interest
as it may help in predicting skin friction, heat transfer and nonise gen-
erated 1in the transition region, it can hardly evplain the dynamics of

the transition process itself,

It was previously observed (Wygnanskl, tlaritonidis and Kaplan 19/9;
that a wave packel trails the spot. The precise relationsnip between
the packet and the spot is not fully understond, parlicularly at low Re-
ynnlds numbers, but on numerous occasions 'he wave packel oroke down
generating a new Lransitional spot which, al least initially, did not
manage to catch-up wilh the parent structure. The breakdown of a wave
packet into structures resembling hair-pin eddies suggests that the spot
may contain a fairly orderly array of such «ddics,  Incipient gpots in
favorable pressure gradient (Wygnanski 1980) contained initially three,
then five distinctive eddies arranged in a A formation. The number of
these eddies increased for a while with down:tream aistance,  but later
they merged to become indistinguishable further downslreams as a result

of' Lhe averaging process.

Thus in order Lo map the structure of a "typical" spot more sopnis-
ticated averaging techniques have Lo he employed. In the following dis-
cussion few attempts are made Lo pry the iuformation from streamwise
velocity measurements made with a normal het-wire rake whicn supplies

instanteneous velocity information across the ontire boundary layer.

Measurements were made in the absance of pressure gradient at a
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free stream velocitly of Sm/sec and a perturbalion located at R%;:'(du
based on the local displacemenl thickness of the laminar boundary layer.
The experimental facility, the instrumcatation and “he data acquisitinon
system were discussed previously (Wygnanski, Haritonidis and Kaplan

'974) and will not be repeated in the presen! on!ex'.,

2) QN THE LONGITUDINAL STRUCTURE IN A 3¢9l

An ecxample of 10 simultanenus, slreamwise, velocity perturbation
signals , observed during a passage of a spot i3 shown in fig.!. The
abscissa in this figure is time while Lhe ordina'e c¢orresponds Lo velo-
cily. The numbers opposite each lrace correspond Lhe dimensionless dis-
tance of a given wire from the surface of the plate, expressed in tLerms
of  the 1local laminar boundary layer thickness, §u . One may clearly
discern large velocity fluclualions which are coherenl  ocross most of
the laminar boundary layer. A characteristic frequency associated with
these fluctuations corresponds Lo Lhe most amplified
"Tollmien-Schlichling frequency appropriate 'o tnis case {see alsn Wyg-
nanski, Haritonidis and Kaplan 1'9Y79). Power spectra averaged over 200
events confirm the existance of energetic flucltuations at tne
Tolimien-Schlichting frequency. The specltral peak, however, is nol very
strong relalive Lo the background turbulence, and it is not clear al
this point, how it may be used in recopnslructing Lhe flow field associ-

aled with a typical (or a most probuble) spot.,

After examining numerous veloclly records a  simple c¢riterion was

I PR N
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deviced which classifies the record according Lo easily distinguishable
numoer of large coherenl fluctuatious. The velocity reéords are firsl
low-pass-filtered digitally in order to remove from each record the ef-
feots of the small scale turbulent tluctuations. The filtered record is
scatiied  and Lhe *imes at which the velocity drops Lo a4 ninimam locally,
are recorded and slored in memory as indicaled by the vertical lines in
figuire 2. The local minimum velogity has to pase an arbilrarily deter-
mind treshold level relative o the nelghboring maxima before being re-

corded. The treshold criterion eliminates small amplitude flucluations

f'rom the count but introduces an element of subjectivity Lo Lhe procss

dare, 1t was empirically established that the fnllowing 1iocucsion is

iesensitive Lo the choice of the treghold fcevel.  For  example halfing

tre Lreshold level would result in accounting for ope additional ainimum

(G rather than %) in the upper veloeity trace chown in fig., 2.

Adopting this procedure for cacn weasuring  station <nables  Lthe
ciangsification of spots according ‘o ‘he number of large eddies which
hey coontain.  Some Lypical probability density distributinas  showing
he most probable number of eddics on the pliane of gymmetry of Lhe gpot
a'. a given distance from the perturbation are czhown in o fig. 3. The
most  important conclusinon  from these i stograms 1s Lhat the avarage

number of large eddies in a spot 1. mmall.

For example; measurements mace 375mm downciream of the perturba-
ion (975mm from the leading edge o the plate) indicale thal Lhe aver-~

age number of large eddies {n a spot is 4.6 und the most  probable  spot

ki ek e ks ey 5 G 4 e e s AR RN .
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detected on the plane of symmetry betweon U..ugy/s‘g G.d centained o
lirge addices. The most probable number of oddics near fhe  surface  ana
At y/g. >0.8  is slightly léwer {at y/5_ 1 the st probable numbor io
§) vecause the initial breakdown Lo turbulence occurs ot 0.5< y/g & U.o
(e atsy Kovasznay Komoda and Vasudevs, "402) aqul some of tne edagicwn

tie nol arrive perhaps al the maesuring stalion.

[N

The eddy delection scheme shown in fig. 2 renders oot only the
nunber of eddies in a given realization but alsoy ‘the Lime of their arri-
) val abt the location of measurement. Ta.:ge Limes were stored  and  Lue
erobability density of Ltheir distriout ion was ccowninea. 1L appears topal

tne eddies arrive at preferred times sl the measuring station (Fig., 4).

Thus if one selects only Lhosc spots winioh ecutaia o given numbor of od-

Jies tne histogram showing their  itae of areivael uill contain { Panbical

numoer  of peaks; each peak corpecpondas Lo Lt preferential time of ar-

d . ival of the specific eddy. Sinc. the probability density distribution
f  Lhe number of eddies in a pol i3 narvew, by choosing only Lhose

spols which contain Lhe most probaovle number of cdidies For turther anua-

) lysis are selecls belween 25% -~ Hip of Lhe Lotal number of evenls; such

+ large fraction justifies the subtdivision of {ransitional spols into

. zeoups conlaining an equal number of eddies.

The abvementioned information can be usged obtain Lhe delailed tlow

! field in a spot whizn contains a prescerived number of eddies. The pro-
cedure is {llustrated schematicatly o rig. 5 showing ibs inherent wd-

vantages in mapplng the Clow ficia o a "youne” spol conlalning 3 eddies

‘ I s et e e ettt AN S v e L
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(1) The number of eddies in a spol is dutected and 2 simple
cnzemble-averaged  velocity conditionod car T pertarnagtoon i
cujated (rig. Ha). since only the sp ot containing §oeddiog wWer
selecled for the averaging, Lhe ensemblce avoraged velocity contains
3 local minima. It is clear, however, thal the amplitude of  fneoce

minima is not representative of Lhe velocily record in a single re-

alization drawn ‘o Lhe same scale in fig. bt

(ii) Each realization is shifted in Yime in order o align the
location of ils last minimum before averaging. The cnsemble aver-
aged velocily resulting from the alignment procedure is  shown in
tig. 5b. The amplitude of Llhe trailing flu:tuation in Lhe ensem-
ble is enhanced by the alignmenl process andt s comparcable Lo tne
amplitude of the single realizalion showa in fig. 5. [he neigh-

bouring minimum was hardly atfected by the aligonment  while the

first minimum disappeared.

(iii)Repeating the aligument procedare tor the firsl and tn
second minimum enhanced the amplitude of the particular minimum

concerned (fig. 5c, 5d).

(iv) A composite, ensemble-averaged velocity perturbation re-
cord is generaled by subdividing the overall temporal record inte 4§

sections (fig.5¢)., This subdivigion w5 At cach g wlidy
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has a limited zone of influcnce. The volocity perturpsation in re-
gions (1) and (4) are under the tnial inflnenne of minima A and ¢
respectively. The veloelly perturbation in regions (2) and (3)
have been weigiled proporti-naliy ta tne it ance (time olapsce!)
from  points A, B and O reaspeativelv b forve sversgine. Thas foe
velncily preturbation at peints A; H; C; are  identical Lo the
velocily-perturbations Snown in figs. Hd, 5S¢, 5b respeclively.
The velocity in region 2 is a weighted average of the records shown

in fig. 5¢ and 54 respeclively while the velooity in region 3 is

the weighted average of records Sc¢ and 5b.

Thic procedure «can be applied Lo any numt:cr ot ediics «xis*ing in a
awost probable spol at a given conrdina!e.in space. The ulbimate purposs
~f “he process is Lo reconstrucl a detailed 3 dAimenzional tlow field in
‘ne most probable realization from a large number of poin' measurements,
weepting the fact thal conseculive realizalions are only browdly  simi-
e, The suceess of the procedure is determined by comparing the recon-
structed velocily perturbation contours in 4 spot with the contours
measured by an array of wires during a passag: ot a single realiza'ion,
The comparison is made al the largest distance trom the location nf the
perturbation for which data 13 available (i.e. at X-Xpert = 375%mm). At

Lthis distance Lhe spol is already quite large and may be c¢onsidered

S5
fully turbulent (RexLE > 3.3%10 or Hes¢ =4 H? ). ‘the comparison Lhus

reprsents Lhe mnst severe test of Lhe procedure based on Lhe available

data,
R R e e e i s R .« o e
“e .L"v_‘ o
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A simply ensemble-av?ragéd velocity perturbation record is shown in
fig. 6a. The velocity perturbatinn is entirely positive near the sur-
face and entirely negative at large Jdistances from the wall., I'his re-
cord , however, differs somewhat from similar g reported by Wygnanski
Haritonidis and Zilberman (1980) because Lhe measurements wsre made al
much lower Re. The most obvious difference concerns Lthe exist@nce of
two minima at an interﬁ%ate distance from the wall, (0.25<y/5L<0.b)
which are marked by arrows in fig. ba. Another difference is concerned
with ‘ne existance of a pnsitive v-locity perturbation near the leading
edge of the spol which extendsto y/g& =0.6, wnile it no longer exists at
y/§ =0.2% al nigher Re (see Wygnan ! Haritonidis and Zilberman 1980).

The same dala was reprocessed according ‘o 'the procegdure outlined
earlier and plotted in fig. 6b. This data represents a velocily per-
turbation resulting from the snole ‘ntflucnce of the large eddies, in  the
most probbable realizalion, on ‘he plane ot symmetry of Lhe spot al a
given He, and X. The most probabl.: upot contains 4  large eddies at.
0.15<y/5 $0.6; 4 eddies near the surface and at 0.65¢y/gg0.85 and
only 3 eddies at y/scz1. The perturbations shown in fig. bb contain
detailed  information  abtoul tLhe interior structuare of the flow which is
not. visible in fig. 6a. Heavy filtering of the data in fig. 6b repro-
duces  Lhe regular ensoamble averaed veloci'y perturbattons,  Velooity
perturbations recorded during Lhe passage of oo fiprst spol in the ex-
periment are shown in filg. 6c. The velocity record contains nigh fre-
quencies associated with small turbulent eddies which are simply fil-

tered and replotled on the sam: tigure. [l filtered signal {5 dis-

- N T A —————— v
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placed vertically for convenience of comparison, and although ft iz 1o
Prentieat to the most probable realization, the latter appears Lo con-
*ain the most relevant information which is missing in fig. ba.
Veloeity perturbation conntours corresporeding o figs, La,bye are
plotted in fig. 7. The vertical scale in this figure corresponds to a
distance from the wall while the horizontal scale is time. Using a re-
presentative convection speed it appears tnal Lhe vertical scale is ap-
proximately strelched by a faclor of bu. The  similarity between  the
velocity perturbation contours recorded during a single evenl and the
cduced most probable perturbation contours stown in fig., 7b is  impres-

sive, while Lthe contours shown in figuare (o cont ain o such Jdetail,

3) THE SPANWISE STRUCTURE IN A TRANSITIONAL 3PQT

There are objective difficullics in obtaining reliable data  near
‘he wall using a rake of hot wires orfented in Lhe spanwise (2) direc-
tinn, because any small surface positioned parallcel to the wall may pro-
duce 1ift when inserted into a boundary layer resulting in the shedding
af trailing vortices., One may no' overcome this difficuily by position-
‘ng  the rake parallel tn the direction of the mean streamline at every
]uvel-frnm the surface because the 1ake may still 11fL periodically
while 1interacting with the large coheren! structures in the boundary
layer and shed, in addition to streamwise vorticity, a4 starting vortex
which 1is equivalent in strength lo lhe bound voriex assnciated with tLhe

1if.. Thus, all present experiment. s were made  with o rake of  wlres
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Wwhich are normal Un the surface (sce tigure 1V of wWywne . ski, Haritopiiis
and Kaplan 1979) . The flow was ‘raverged from the plane  of sypmm ey
outwards at  intervals of AZ=2mm in order ‘o proyide suffi:ient spatial

reusobation of the longitudinal suos ructure,

Measurements in favorable pressure gradient (Wygnanski 1Ys0) have
p

shown  that Lthe velocity perturbatioen at a given distance from tne wali

is unt homogenously decaying across Lhe span of Lhe spot, Positive vei-
ocity-perturbation regions near the solia  surface ware separclod oy
arcas of decelerated flow, pointing to the poc:ibie axiztence of  longi-
udinal o ovortices, The number of ‘he strustures foopeaset ol tally in
Cneovwastream direction untill tne longitadinal ubgirmiture becows (-
Jdistingulshable in the mean, wivimg an appearence SP a single larg:e
orose-shoe eddy. 14 was then realicad ‘bt fhee ‘ndividual o spots vary
considerably  in width , so that tne wwveraging process includes realiza-
\ Cions which do not ex'end as far in 7 as Lhe | ine of measuremen' and  do

et contribute to the velocily porturbation. i some vba was Lhen re-
piocensed after the smaller spots woere exclodet trow e averiging,  and
“he panwlse structure re-emerged o Lhe wean . he procedur: s biiged

warde Lhe larger spols but it e the advant e f siting ou itrelo-

A& simple ensemble-averaging procodure oo it Poned Yo Ve perturda-
Clon was used in the precent experiment o oedoacs Chee cpanwise sUpaoture
Lomm downstream of the origin. ‘ihe incipient oot (g, ") sntoains

v

three lopgitudinal structures sitaated dnoo v e o (o b Wys-
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nmanski 1980).  The spanwise distance between !ne cenlers of Lhes: struc-

. LN X4 ,
ares  near the surface in Yerms of w 1l coordinates 32 :~f§-;90 (Wwhere

‘e friction velocity U% was estimated from fully developed tfurbulent
Deaatidary layer data).  The number AL g0 iy Pite e 2t iny , wecause 1L ois

Spewimitely  eqgual ot the  Jdist anee measeeesd petween toneitadinagl
“'reaks  In A fully turbulent boundary fayer. Renecatiug the same meas-
urements in a developed turbulent spot {(al x-xperg=300mm)  oul bplasing
'he averaging towards the larger events indicates !that Lhe spo' contains
5 structures in the spanwise direction. There i an increass in Yhe
rumber of  the structures with downsiream dis!ance bet there i3 40180 an

[

“roorease in Lhe distance between 'he centors o atjocont atirustares. L4

tel{eved tnal the increase in *he pumber f ' rustures is deainat ing

“heotaterdal growth of the spotb.
Looantwell B Cotes, b Dimotakis,t '78) Job ML <y, b,

Gag Bl Hak,M Blackwelder R.F viley,J.d. (I1ye0). i Lominae Turbu
frmsition edited by bBppler and Fascl, Sprimger Verlag berlin, Proceed-

e oft TUTAM Symposium Stuttgart (1979).

4. Kowasznay,K.S.G., Komoda,H. and Vasudeve Bk, {19b2)  Proz,
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1. Velocily signals during a passage ol tne uspol,

L
the ddeteetinn of signiticant minimio witnin
:. A Histogram showing the number of eddies in a spot.
4. A Histogram showing the times of arrival »~f tue large elddics at  he
measuring station.
5. The eduction of the large coherent eddies.
(a) Simple ensemble average. (b) Ensomble averaged velncity
aligned on the mosl rearward euly. (<) Ensemble averaged velo-
city aligned on tne middle eddy. (.4) Lnu.mble averaged veloci-
ty aligned on the leading eddy. (e) A weighted compo: te aver-
age. (f) The velocily in a single realization,
v. Veloecily records in a spot.
(a) A simple ensemble averaged record. (b) A composite ensem- !
ble averaged record showing Lhe mos!. prabable distribulion of
, lhe large eddies. (c) The velocily perturbation during a sin- !
gle event. _
i
|
\
7. Conlours of velocity perturbalion corrcoponding o fig.b a, b,
. !
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8. The ensemble averaged spanwise structure in a spoti.
(a) (X-Xpert)=150mm. ' {b) X-Xpert=300mn. (e)

plan view of a spot.
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ABSTRACT

Pulsating flow of air in a straight smooth pipe was investigated
experimentally. Most measurments were made at a mean Reynolds number of
4000, but the influence of Re was checked for 2900<Re<7500. The period
of forcing ranged from 0.5 sec to 5 sec which resulted in the change in
the non-dimensional frequency parameter O =Rv3®f 4.5 to 15. Velocities
at the exit of the pipe and pressure drop along the pipe were measured
simultaneously; velocity measurments were made using arrays of hot-wire
anemometers consisting either of normal wires or an x array. Signals
from the anemometers or pressure transducers were digitized and pro-

cessed by a minicomputer before being recorded on a magnetic tape.

The introduction of periodic surging had no effect on the time mean
quantities. The present data was compared in detall with the theory of
Uchida (1956) in the laminar flow regime. The time dependent components
at the forcing frequency were represented by the radial distribution of
amplitude and phase. An integral momentum equation in a time dependent
flow requires a force ¢triangle to be maitained at any instant. The
triad of forces are: preasure, inertia and shear. All terms of the
force balance equation were measured independently providing a good
check of data. The measured turbulent characteristics of the flow, in-
cluding the RMS values of the velocity fluctuations, Reynolds stress and

short time power spectra are dependent on the phase of the forced oscil-

- T IS o ghi




lations.

The radial distribution of the phase angle of velocity is qualita-
tively different in laminar and turbulent flows. In order to explain
this difference the concept of a relaxation time of the turbulent flow
was employed. A simple eddy viscosity model for time dependent flow,
whioh takes into account the "memory" of turbulence is proposed, and
numerical solution of the Navier-Stokes equation for the turbulent pul-

sating pipe flow utilizing the proposed model were obtained.
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=sound velocity

=fourier transtorm coefficients

szintegration constants (kq.(z.2v))

=20.U empirical constant in eady viscosity model
zpower spectra coefficients
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CHAPTER 1

INTROVUCT1ON ANY REViEw OF LATERATURE

1.1 General Introduction

The pulsatingz pipe flow is considred a "siaple" tice uepenuent
flow. it is "simple®™ both spatially and temporzlly. in thne aosenci of
swirl the pipe flow is two-dimensional spatialiy, anu in tne fully ue-
veloped region all mean quantities are functions of tne radius only.
tevertheless, tne theoretical solution for tne prooiem of the linear
stability of the stationary pipe flow was only recently obtainec (sce
Goldshtick and Shtern (1977) and the process of transition from tne laa-
inar to turbulent flow is still an enigma although it nas been investi-
gated experimentally (Wygnanski and Champagne (1573), Kubin, wygnansxi,
and Haritonidis (1979)). The spatial "simplicity" of the flow is tuecre-
fore somewhat delusive. The superposition of simple narmonic oscilla-
tions on the steady mean flow adds a temporal dependence which consider-

ably complicates the detailed analysis.

The importance of studying time dependent flows in general, and
pulsating pipe flow in particular, is obvious. Most biologicai flows
are pulsating, may be because the peristaltic pump is the simplest pump

wnich can de employed by a biclogical system. rulsating pipe flows were
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tncrefore extensively studieu oy investizators associctew uitn wmedicine
aru  life-sciences (for refercnces see laro, Peuley anu ociroder (147u),
tusszin (1677)). won-steady flows occur also in aany engineering appli-
cations, for exaaple: tne cischarge of any piston pump is pulsating,
taus the flow in an intake or exnaust manifold of internal comoustion
enzine is pulsating; the flow in hydraulic lines anu control systems

often pulsates ctc.

1.2 lne ianalysis of Perfodic vata

ire periodic nature of the turpulent flow suggests tne decomposi-

>
icn of zany flow variable 5ix,t) into > components (:Lusszin and Keynolds

r

(1L 70))

sk, t)=g(X)+<s(X, ¢)>+g'(%,t) 1.1

waere g(;) is time mean value of the variabie a(;,t) at point x

T/2
5(%) = 1a 1/1 Jg(i,t)at
T 12

->
<stx, $)> is tne contribution ot the periodic part at & phase angle ¢ at

->
tac same point x and is definea oy

N
<&(X,9)> = lim /N Z(si(;,w-g(?:))
N-wo i=l

AR T, WY, <
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ana g'(;,t) is the random nonperiodic part. wxperimentally, the value
of <g> 18 aeternined oy averazing thne ceta at a fixed pnase angle ana
subtracting from the result the time mean valueiz. ihe flow is pulsat-
inz provided the quantity <g> does not vanish. From the definition of
tne phase mean component <g> it is clear that the following relations
must bold for tne temporal mean values

—— tp—

g'=<g>=g'<h>=0 1.2

A distinction is sometimes maue between "pulsating® anu "oscillating"
flows; tne former term implies that oscillations are superimposed on a

non-vanishing steady velocity, while the term "oscillatinz"” flow refers

to g(;)=0. ‘ihc phase depencent part of the flew <g> is referred to as

the oscillating part.

Assuming that the flow is not only periouic, out also narmonic, ana
defining the phase angle ¢= wt, tne periodic cozponent aay be represent-

et Oy the real part of the exponential
<> >
<glx, $)>=ne(g, (x)exp(1( wt+ ¢5)) 1.5

wnere 51(;) is tne amplitude of pulsations and ¢8 is a reference pnase
angle. hll pnase angles referred to in this work are measured relative
to pressure. Wkhenever a periodic motion is not simply harmonic, tne
tice dependent variable can always be expanded in rourier series, so

tnat the rignt hana side of kq.(1.3) pecomes tne leading time dependent

T Mol
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tern in the expansion.

in the analysis of the narzonically pulsating flows it is often co-
venient to use vectorial notation, which 1is generally accepted in
electrical engineering, and represents graphically the periodic compo-
nent of the variable <g> by a vector of the lengtn 51 ana angle ¢g re-
lative to a reference direction (in our case tne pressure). This pre-
sentation will be used later for further elucication of phase and ampli-

tucde relationships in a pulsating pipe flow.

1.3 Governing Equations

ln the absence of swirl the circumferencial coaponent of velocity «

vanishes thus only the axial u and radial v velocity comrponents has peen
L ]

considered. ) The continuity equation for thne incompressible flow in

cylindrical coordinates has the following form:

3u/3x+1/r 3/3r(vr)s0 1.4

Decomposing the axial andi thne radial velocities into taree distinct

components according to (1.1), and averaging, we obtain that the contin-
)Tha full set of equations for the nonstationary flow in the cylindr-

ical coordinates was given by Cneng (1971).
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vity equstion in the form of (1.4 is valid for each of thrce compon:nts

sgperately: timne mean, periodic, and random.

ine wravier-Stokes equations for axial and radial velocity coapo-

nents (see hinze (1475)) are

ou du o %u _ 123 3%y 3% 1 du .
AR PEREA A P P v(axz * 3p2 M-~ 1.5
v v v _ 13 3%v . 3%y l3v _ v 1

T3 T T 5'5¥'+ v(;;; a2 T 3r 2 ) -0

vecomposing the velocity and pressure terms in (1.5) and (1.6) ac-
cording to Eg.(1.1) and averaging with respect to time taking into ac-

count the definitions (1.2) yields:

- du - du 1 3p 9%u 19 du, 3 2 Zy_ L9 -
g Ve o VO T TR Y ) pay ey

- v - 9V 1 9p 32¢y 19 av. 19 3. T O ST, o
G Va5t o A T roar TV V- gy (weavruivi) 1.8

por ax?

Equations (1.7) and (1.8) indicate that the Reynolds stress in pul-
sating turbulent flow can be regarded as a sum of the oscillating ana
random parts. The HReynolds equations for the oscillating component may
oec deduced by phase averaging of the time dependent equations (1.5) and
(1.0) and suostracting from the result equations (1.7) ana (1.8), res-

pectively.
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v0cit tae pipe flow is fully cevelopeu, il tac tlae anu pacse uean
sircueters are inucpenuent or tioe stresavicse cooraincte &) taus it icl-
lous [ros the continuity ecuztion tiat Loc tewporal ol DaES€  averasc.

rz.iad componcats oi velocity venisn in tac fully aevelopea region.

F=<v>al

The neynolas ecuations for tnc stationary anu csclilating components of

tne axizal velocity are then:

C2=1/p 3p/3ze1/r 3/3r( Vrdu/dr-ruv'v') 1.
A<D/t ==1/p P>/ 3x+1/r( VIIKU/Or-r<utv?)) 1. 10

arnu for the fully developeu laainar flow, equation (1.0, is reuuccu to
du/dtz=1/p 3p/3x+1/r 3/3r( vrau/dr) 1.1

A8 & result of linearity of (1.11), the solution is a superposition of

two incependent parts: the steady parabolic velocity profile calcuiated

oy roiseuille and the time dependent oscillating part.

1.~ rneview of Pertaining Literature

Velocity measureaents in oscillatory pipe flow were firat apsce oy
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nizazrdason (1uii/24) and nicnarason anu 1yisr (1uéy). Lney founa, tnat
in »~ pulsatin; loainar flow tuc maximum of time-aean velocity occurs
near tne wall of tne pipe ratacr than on tne centerline as it does in
stationary flow. The location of tne maximum velocity approached tne
surface witn increasing the frequency of pulsztion. inis pnenomenon was

called "annular effect".

1.4,1 Laminar rlow

vex)l (1630) gave tneoreticazl explanation to thc annular effect in
laninar flow 0y solving equation (1.11). ‘ihe fully aeveloped laminar
oscillating velocity profile was found to be controlled by a single non-
dimensional frequency paraaeter o :hﬂ;73. ror low values of tne fre-
guency parameter ( a<<1) the velocity profilec is nearly paraovolic in ac-
corgance wWith the 1instanteneous value of tne pressure zradient. Ffor
nigner values oi tne velocity profile deviates from the Poiseuille

form and the annular effect appears.

vomersley (1955) and ucnida (1950) extendea the solution of Sexl
for tne velocity distribution and calculated the phase and amplitude re-
lationship among the pressure gradient, the mean bulk velocity, and
shear stress in oscillating or pulsating pipe fiows. The paper of Lohi-
da zives the solutions in tne most convenient form and this will be usec
as the main reference. Atabex and Chang (1561) tried to sclve equations
(1.5) and (1.0) for the developing pulsating flow in the entrance region

of the pipe., lhey estimated the non-linear inertia terms oy assuming

- RN




taes Yo ve proyoriioacl to tac ioved valuz ©f uwdx znu to tae inctin-
tereous  valul o tug velocity entirancoe ot tnv':(l+aﬂcos wt), waerc v is
t.e valte of t.oo wrifera velocit; &t toe cntrance of tue pipe, anu 2 is
rcigtive cupiltuee ofr velocity puisations. wne resuits are not present-
ec in an analyticel fora out & proccuure is ucveicpew nica proviues e

soivtion for any given set or parzaeters.

Linford anu hyzn (1405) ceasured the reiaticn oetwcen the pressurc
srauient anc tne flow rate in zrn osciilatory ilce 0i & uiiture of water
vitn glysol. 1iaey usec only flow visvalizzticr tccanicucs for aeasuring
velocity anu ¢tac accurecy of the rcesults wac pocr. aney concluueu
nowcver, that the aeasurea velocities agreec wita tuic tasoretical calcu-

lations of woxerslcy witain tuc csotiamated expsriwventzl crror.

Lenison (1470) and Lenison et ai (1:71; repertcu on @casuraecats
maue 1in pulsatins lawinar fiow witia irectionaiiy secsitive lcser velo-
clazcter. 1aeir apperatus was 500 ulameters len:, so taeir aecasuracsnts
coulu oe made coth in the entrcnac region anu tac iully cevelopew rezion
of tne pipc. une viscosity of the working fluic wcs voriaoie in order
to prouuce tnc cesired flow paraaecters (mear rey.:oius numoer aoout 1000,
anc frequency paraaeter dngv). 1The results ootzineu in tae fully e~
velopeu rezion were in zoou cgreeament wita %iaecry out in tne entrance
region uiscrepancies were founa vetween tne aeasurcients anu the preaic-
tions of aAtaoexk anc Lheng. 'inc oeasurec velocity profiic uevelopeu sig-

nificantly slovcr, tnan predicted tneoreticelly.
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unmei et al (197b) investizateu both tneorctically and experimental-
1y tne laainar pulsating pipe flow in air, taxinz into account, that the
flufu is sligntly compressivls. ithey concluded that for R«w<<{3a, unere
a is tne velocity of sound, tne radial velocity and cross sectional var-
iations of pressure are negligioly small. ihis result implies that the
compressibility of the fluid does not change the radial distribution of
velocity as long as the radius of the pipe 1s much smaller than the

sound wave lengtn produced by the oscillations.
1.4,2 Turbulent and Transitional Flows

One of the interesting features in the laminar pulsating pipe flow
is that it nmay contain teamporarily an inflection point at some phases of
the motion. At nigh values of the frequency parameter«, points of in-
flection exist at all phase angles. 1t is well known thnat an existence
of the inflection point is a necessary condition for tne instability of
unviscid flows (hayleigh criterion). Sarpkaya (1606) tried to correlate
the instability of oscillating pipe flow with tne existence of an in-
flection point in the velocity profile. He found, that... "the flow
has maximum stapbility, when the duration of the inflection period re-
aches about 53» of period of pulsations". (Sarpkaya (1966), p.598). 1t
snould be noted that Sarpkaya used erroneously a plane coriterion
(dzu/er-O)fbr instability, i.e., inatead of a criterion applicable to
cylindrical coordinates, namely: d/dr(r d/dr(ru))=0 (batchelor and Gill
{1962)). Nevertheless, these efru:o could not affect his conclusions

significantly. The stability of bounded periodic flows seems to have
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iittie in common with the Hayleizn critericn for an unviscid fiuid. in
centrast to free snear flows, lire sixing layers, wakes and jets, wnose
instabiiity is coverned by an inviscid process, tne appearance of an in-
flection point in an osecillatory pounued flow is a result of viscosity.
lnus it seems inappropriate to use the nayleiin criterion on tnese types

of flow.

otability calculations for tne plane-oscillating boundary layer
(ven Kerszeck and Davis (1674), Lavis (1S70)), or the plane oscillating
Poiseuille flow (Grosch and salwen (1968)) or the round oscillating flow
in a pipe (Yang and Yih (1%77)) indicate that tne imposed pulsations do
not maxe the flow less stable. iang and Yin nave found, that the oscil-
latirny pipe flow is stable to srisimmetric disturpances at 21l frequen-
cies and at all neynolds numpbers (bassa in tnis case on the amplitude of
the velocity oscillations). no theoretical analysis is avallable for
tne stability of a pulsating pipe flow, in wnich oscillations are super-
imposed on a steady parabolic profile. The linear stability analysis
applied separately to the mean anu oscillatory components of the flow is
incapaocle of predicting the outcome because the velocity profile enters

into urr-sommerfeld equation in a nonlinear way.

The first experimental investigation of velocity and pressure in
turbuient, pulsating pipe flow in water was made by Schultz-Grunow
(1540)., The velocity was measured by a Pitot tuoe, and was limited to
time averaged values. 1t was concluded that tne instanteneous velocity

profiles were similar to the steady profiles in a converging ochannel
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iuring tne &acceleration stage of a period, anc to tne steaay profiles,
existing in a civersent channel. it appearcd taat tne intcnsity of tur-
oulence increasea uuring the aecceleration stage, this ooservation was

vased on larze increase in the scatter of tne cata during cGeceleration.

Cheng (1971) used hot-wire anemometry for velocity aeasurments in
pulsating pipe flow in air. ne nas found, tnat tiasre is 2 stronz incre-
ase in the Keynolds stress and the turbulent kinetic energy, resulting
froz the addition of pulsations to the steacy flow. 4 strong nonlinear
interaction vas found to play an importent role in ths duistrioution of
tne turoulent enerzy. 1t shoula be noted nowever, tnat tae pipe usea in
(nenz's experiment vas very short, about 30 diameters only, and tne pul-
sations were not siaply narmonic oecause of tne awxwerd manner in wnien
tuey vere introcuceu. Consequently it is impossivcle to ovtain reliable

pnase averagec information from these results.

uerrara (1571) investigated tie turoulent pulsatinz pipe flow by
flow visualization tecnnique wnicn enzoled hinm to ootain zesinly qualita-
tive data. he found a similarity between laminar and turbulent oscil-
lating velocity profiles. uerrarc also ooservec the pnase aependence of
turoulent intensity and found, that all ¢turbulence nearly disappears
¢uring the acceleration stage. 7The similarity oetween laminar and tur-
bulent oscillating velooity profiles was noticed also by rmsmann (1973),
wno used six theraistor prooes for instanteneous velocity measurments at

different radial positions,
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i nuroer of investigators (oergeev (1yob), Clarion and Pelissier
(1%(5), mner«li and Thomann (1477), among otners) tried to determine tne
trensition reynolds number in oscillating pipe flow, wnenever the flow
vecomes turoulcnt during a portion of the cycle only. & large scatter
in tne results indicates, that tne instability ncs a nonlinear character
anu depends strongly on the experimental facility. 1n tne work of Merk-
11 and Thomann, for example, a pipe which was closed from both sides was
used; that resulted in tne appearance of shocik waves and the pressure
gradient was not spatially uniform. Their results seem to be relevant
to tne specific experimental set-up only. 4ill the above mentioned ex-
periments snow that the flow can pe turbulent during some part of the

cycle, and laminar during another part of the cycle.

Llanen and hinton (1977) investigated expcrimentally oscillating
ana pulsatinzg pipe flow in water Dy a hydrogen-ousole tecnnique. A Zood
agreement with theory was observed in laminar flow at low Reynolds
nuzber; at aigher Reynolds numbers, their pipe wnich was only 170 diam-
eters in lengih was far too short for the flow to oecome fully devel-
oped. They ooserved that tne intermittency of the pulsating flow at
higher Re (Re%2900) depended on both the mean Ke and amplitude of velo-

city oscillations.

mizusnina et al (1973a. 1973b, 1975) and Maruyaaa (1974) investi-
Zated a pulsating turbulent flow by electrochenical method, which en-
aoles measurments of instanteneous velocity. 1he measured data was re-

corded on a magnetic tape for subsequent processing on digital computer.
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1ney founc 2 oritical value of tue pulsation perioud . so that for

or!
sicw pulsations (i.e. for 1>Tcr) taere is no sicrificant change in tur-
dulent intensity &t different phase angles, anc the flow penaves like a
®stcady® turbulent flow. For nigner frequencies (i<T cr" tne turbulent
characteristics are strongly dependent on the phase ansle. 4 calculated
euty viscosity e=t/(du/dr)attained negative velues at certain pnase an-~
$les, when relaminarization took place during tne accelerztion. An em-~
pirical relation for critical period of pulsations Icr wzas determined to
oes

1, 0/D=0. 1one/> 1.12
vnere U 18 tne time mean ouli velooity. 1t is not clear frou tnese re-
sults wnetner tiae cnange in the flow peanaviour results irom the differ-
ent trequencies of pulsations, or there night be an influence of the am-

plitude of tne pulsations at higner frequencies.

iirmse (147y) used laser Uoppler velocimeter %o measure »julsating
turoulent pipz flow in water at high values of tne dimensionless fre-
quency parameter (55< a<137). ‘lhe phase shift oetvween pressure and vel-
ocities at ail radiel positions and at all frequencies was found to be
so°. hn eday viscosity model was used to ocalculate tne time-dependent
velocities in tiis type of flow, and a reasonable agreement was ootainea

for velocity profiles at two phase angles.

ramaprian anc Shuen-wei Tu (1400) observed laminarization of ini-
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tially turculent flow of oil in i1 pipe waen pulsations werc intro.ucc..
sy ooservelr tnat tiuc magisus zaplitucc of tac velocity pulsations near
tne  surface of tne pipe is attcinea Qefore tane weximua amplitude occurs
ic tic central rezion of tne pipe wnenever the flow is fuliy turoulent.
roor anzular resolution of the data in their expsriment dia not aiiow
them % get quantitative infornztion apout phase snift angles., The veli-
ocity profiles, ameasured in laminar pulsating flow, were in good &3ree-
ment with the tneoretical results of Oonida., oimilarity was noted
oetween laminar and turbulent flows at tne sane freqguency, and it uas
concluueu tnat tone imposed oscillations nave no effect on tne time mean

properties of tne flow.
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2.1 General Lescription of the Experiamental apparatus

A straigzat and smooth aluminium pipe 33 ma in clazeter and 17%10°
om long was used. The facility, snown schematically on Fig.2.1, was or-
izinally used by Wygnanski and Champagne (1973), and described in detail
in their paper. The pipe was carefully alligned to within ! mm over
it's entire length. The contraction was made of two subsections, gi#iﬁg
an overall area ratio of .340:1. As s result of the careful alignment
and the smooth inlet, laminar flow could be retained at the heynolds
numoers exceeding 20000 without the addition of screens. ‘tne mean flow
was supplied by a high pressure source (6 atm compressor) and controllsea
oy a precise pressure regulator. This arrangeaent 1nsured that that tne
flow rate was independent of the superimposed pulsations and the flow

rezine, waetner laminar or tubulent, in tne pipe,

Pressure oscillations were introduced by a valveless piston pump,
cornected to the settling chamber., The piston diameter Dp was 90 mm,
and it's displacement rp could be changed from about Pp:5 m to rp-75 aa
in 17 steps. The length of the scotche-yoke was zpssoo m. ine pulk

rate of change of the settling chamber for the oircular freqQuency w lis
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ine amplituce ratio in the oulx displacement octwcen tne fundaxental
frequency w anc it's first narmonic 2w is thereforec rp/ilp(ox et tne ai-
gnest possidle cisplacement amplitude. 1Tne oscillations &t the naraonic
frequency coult tnus pe neglected. The puamp was criven oy 1.5 ap veri-
adle speed aotor, peraitting & cnange in tne poriol of pulsations
octvieen J.5 3cc to 5 sec. ‘the repeatabllity or tnc jerioa was petter

than 003:00

c.. ine riston rump as 2 sourze of Pressurc anl vYerccity rulsaticns

ane velocity :=:nc pressure pulsations in tne pipc, resulting frox
tne ooveaent of tne piston, can oe easily anclyzec Oy assuming tnat tae
flov in tne pipc 15 laninar and fully cevelopeu. iie anplituce of tae
pulzations o. tie oulk velocity is u'-Q'Iwhi, viiere K is tie raaius of
tne pipc, anc k' is the amplituue of tne oscillatiors in the flow prate.
Yy {3 proportional to ap'/ax. waere p, is tie anplitude of preasure pul-
sations ot tne entrance of the pips. For fully dqeveloped flow
ap'/axap‘/L, wanere L 1s the lengtn of the pipe. rfor a given aapiitude
of pressure oscillations the amplitude of the oulk velocity U‘ depenus

stronzly on froquenoy. 1f U is the steady part of tne voluametric veio-
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city (o=/ WS, wasre Q is tinc acen flow rate) znc 3 is tne steauwy pres-
surs, tnen toe raictionsnip cetwiln %ac ensaavic everazcu tiac uepenuent

prrts <bL>» anu <pr scen ve e4sprescec Oy the egquaticn
LI/U=<W = O (<p>/p)cos ¢ 2.1

vhere the amplituce coefficient 0q=(&1/5)/(p1/5) an¢ pazsc lag angle ¢,
vere calculatse for tne fully developed loiiner flow oy ULcaida (1isu)
anc¢  reproduced in rig.z.Z2, Tne aoscissa 1in tais rigure is
loz u:lozﬁ/m75. it can ve seen from figZ.c.ec, tazt at very lovw frequen-
cies { agi)o G *1 zn¢ tne pnasc lag ¢q 0. ‘laus, waen tne frequency of
tne ioposeu pulsations 1is low, the flow at any instant venaves like a
Poiseuille flow at the appropriate instanteneous pressure gradient.
lnertia effects oecome noticeable with increesins frecuency wnen tae
flow cannot follow after the rapic changes in pressure anymore. sn in-
crezase in a causes a correspondinz increase in tne pacse anzle petween
tae volumetric vclocity anc tne pressure ¢q' and dampens the amplituce
of ¢tnz velocity pulsstions, as well. a4t very nigrn frcquencies (a >>1)
the inertial term becomes doninant in comparison witn the viscous ter:,
ana the resulting acceleration (dG/dt=iw G,) is proportional to tne
driving force (instanteneous pressure). The guantity 1&, is taus in

pnase with ¢the pressure, vwalle the pulsations in flow rate nave ,o°

phase laz beninu p,.

onsider tne control voiune in witicn tns oovement of the piston

causes a corresponding change in the volune of the settlin: cnamoer,
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if <> is tne time dependent component of the voluae flow, tne continui-

ty equation for the control volume may oe expressed py:

dn/dtsd/dt( pV)==<Qp>

[\
)
N

wnere V is tne volune, pis tne density, and <(> is assumec to oe posi-

tive when the fluid leaves the settling chamber tarougn tne pipe.

for small zaplitudes of volume oscillations, V1. (relative to the
total volume of the settling cnamber Vo) ana pressure oscillations, Pys
(relative to tne atmospneric pressure po) equation (2.¢) can oe linear-

ized to give

podV/dt.-a-Vod dtz=p °<Q>

N
.
[V

tquation (2.3) is a linear homogeneous equation, naving solutions

of tne form

VaV oV exp(1( Wte OV)) 2.4
pspoof»p‘cxp(iw t) )
<Q>-Q'exp(1( wt- oq) 2.0

S M N
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where ¢v and ¢q represent the phases of the volume and flow pulsa-
tions, respectively, relative to the phase of the pressure oscillation
which was arbitrarily set to be zero. Assuming that air obeys the ideal

gas law

p=fRpT 2.7

where ﬁ)\is gas constant, and that the process is isothermal, and substi-

tuting equations (2.4) to (2.7) into (2.3) one ootains
poiw Viexp(i(w ted )4V 1w p exp(iu t)+p Q,exp(i( wt- ¢q))=0 2.8

Eq.(2.8) contains two unknown amplitudes, P, and 01, but the as-
sumption of fully developed laminar flow provides an additional equation
relating the two quantities. Substituting (2.1) into (2.8) and cancel-

ling exp(iwt) yields

1w p Vyexp(1 ¢ )ep,(dw V- 1/p on oqexp(-i ¢q))-o 2.9
Equation (2.9) can be separated into real and imaginary parts and solved
for ’v and Py. In laminar pipe flow Q/ps nD"nzu UL is a known guan-
tity fixed by the flow geometry and the viscosity of the fluid.

Substituting it into (2.9) and taking real part of the equation gives

- wV,sin ¢ _+(Q/p)p, 0008 %0 2.10
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<2 irtzoinsry part of (c.y) nrovilzs tac scoone equvation
P, V Q_ sin ¢
cos ¢ = - o GJZ + 449 ) z. 1
v vV, P -
1 7o pw

ine say now exspress d’v anc p, in terms of tnc piston cisplacement V

ant freguency ol pulsations w

P g-o cos ¢
°- 9 q

tg ¢v = - P - 2.12
WV + P %oq sin ¢)
wV1 sin ¢v
P, = ———— 2. 15
Q
Jg_ cos
p 4 ¢q

ine amplitude of tne oscillations i the flow rate Q1 can oe expressec

in teras of P, anu tGg.(2.1)

Q,=(p1/5)ccﬁ 2.4

ror a glven azplituce of the volumetric cnange of tne system v,,
aaplituces of tne oscillations in tie flow rate Q‘ ana in pressure 2,
were calculated from equaticns (2,12) to (2.14) =s functions of the per-
fou (Fig.z.sa). at low frequncies (larze values of the perioa T,% <1)
cq =1, and the pressure amplitude in the settling cnaamper is adequate to
"pusn® througn the pipe nearly all tne mass fiow supplied by the piston
puap to tne settling champer. At these freguencies tne aamplitude in

flow rate 1is tnus proportional to the rate of change in tne voiune of

the settling chamber V‘. Ffor G<1 tnerefore the relation Q1~ AT is
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obtained.

At higher frequencies (a >1) oq decreases witn increasing frequency
(see Fig.2.2), and the amplitude of the pressure oscillations in the
settling chamber, resulting from the oscillations in the volume of the
system grow more steeply than the flow rate. 1n order to understand the
physical meaning of the mutual interaction between the oscillations in
the pressure and in the flow rate, equation (2.0) is rewritten in vector

-+ > ->
form, using the notation V=u3°V1exp(t¢v); P:uv°p1, and Q=p°Q1exp(-r¢q):

> >
> a

iV+iP+Q=0 2.0

The calculations indicate, tnat the oscillations in pressure and volume
are nearly 160° out of phase (¢v~100°), i.e. pressure increases when
the piston pushes air into the settling chamber, and vice versa. At
frequencies corresponding to az 5 the resulting oscillations in the flow
lag behind the pressure by more than 70° (see Fig.2.2). Taking into ac-
count these phase relations, and the fact, that multiplication by i adds
90° to the phase angle, two sketches can be drawn, the first showing the
relative direction of each vector, and the second representing the mass

balance in accordance with Eq.(z.a°):
3 iB

v iV 6

<t
[
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it toiloxs from tne diz-raa, taet toe pressure vector iF is in-
ciinecd to tae flow rata vector : oy aoout lbo°. wien tie pressurc in
tne settling cnzaoer is maxiawi, toe time cepcnuent rortion of the flow
rate 1is diresctea towards tne settlinz cnamoer, causinz a furtner incre-
ase in pressure amplitude. 1ne pnase relations oetween pressure and
flow rate ¢tnus lead to a Kind of a positive feeudack, resultinz in
curves QI=Q1( a) and p1=p1(a ) (Fig.2.3a), which resemble a resonance
pnenomenon. Tne amplification of pressure oscillations nas however
nothing in common with resonance, since in tnis case tne system has no

eigen frequency.

at even higher frequencies (a >0) 0q is small, and tne pressure am-
plituce is insufficient to previce strong oscillatioas in the flow rzte,
taus Q‘ decreases, and the amplification iniluence of tne flow rate on
the pressure fluctuations weakens; so the pressure amplitude decreases
togetner witi the amplitude of flow rate. #further increase in frequency
(¢ >10) results in oq* 0, and vanishing oscillations in flow rate. 1In
tnis case tne entrance from tne settling chamoer to pipe may be regardea
as closed for the time dependent flow, and the amplitude of the pressure
oscillations tends to a constant value poV1/Vo waicn corresponu to the

ideal gas law pV=corst.

The results of Fig. 2.32 were calculated for tne geometrical data

appropriate to the existing experimental facility. The total volume of

the settling chamber was approximately equal to ! mj, and the maximal

3

changes 1in volume were 100 cm The preceeding calculations show, that

1o P YA B D e
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the maximum respence of tne system to the volume oscillations occur at
izh.e5 sec (@=5.7) (Fig.z.sa). in reality, the amaximum amplitude of
pressure pulsations occured at T1=2.4 sec, corresponding to & =zb.7.
(Fig.2.3°). Tne discrepancy between theory and experiment is attributed
to the influence of the entrance region whicn was not considered in the
calculations, and some difference 1in the geometrical parameters.
Fig.2.3a shows that the calculated maximum amplituce of tne pressure os-
cillations 1is avbout three times nigher, thnan it woulu have been if the
settling chamber was closed (i.e. A p( a=5.7)/ Apla»e ) = 3) The maximum
aaplification in pressure oscillations realized in laminar flow was ap-
proximately 2.5, and the absolute value of Ap at a=o.7 agrees fairly

well with tne calculations (see Fig.2.3b).

Some amplification exists in turbulent pulsating flow also, as it
can be seen from the Fig.2.3b, but the maximum amplitude is reduced.
The mechanism of the amplification in turbulent flow is Qqualitatively
identical to the mechanisam in laminar flow. 1t will be snown in Section
3.2, the oscillating parts of the bulk velocity <u> in ooth laminar and
turoulent flow behave alike, put the phase lag angle ¢q is notably less
in the turbulent flow, than in the corresponding laminar case. The com-
ponent of the flow rate vectorla, wnich is collinear with the pressure
vector f;'and thus causes the amplification (see the sketches), has the
lengtn |3|sin¢q; and thus a lower value of ¢q in tne turbulent case
causes a reduction in pressure amplification. 7The maximum of the curve
p1=p1(a) is shifted 1in & relative to its position in the laminar flow

obviously due to different amplitude oqnoq(a) and phase ¢qs¢q(a) rela-
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tions in this case.

2.5 The Influence of the Lengtn of the Pipe on the Pulsating Flow

It is usually assumed that in a fully developed region of a pulsat-
inz pipe flow the pressure gradient depends on time only, and conse-~
quently the radial component of the pulsating velocity has to vanisn.
Only recently Richardson (190¢0) raised this question in nis discussion
of the paper of Kirmse (1979). Richardson argued that applying a pul-
sating pressure at one end of the pipe does not necessarily result in a
linear pressure distribution along the pipe; acoustic waves may make
pressure gradient dependent on tne axial coordinate and resulting in the
generation of a radial component of velocity. 1t was noted in Section
1.4, that the fully developed, laminar pulsating flow is independent of
the axial coordinate because the inertial term in the Navier-Stokes
equations (1.4) (ﬁv )3 dissapears, making the equation linear and ena-
bling a separation of the steady from the osciliating flow components.
The pressure gradient is independent of tae axial coordinate whenever
any change in pressure at the inlet of the pipe is felt "instantly" in
the entire pipe. Since a weak pressure pulse travels at the speed of
sound, a, the assumption of spatially constant pressure gradient may

only pe valid for a limited length of the pipe L.

1n order to obtain an estimate of the highest permissible pulsation

B R
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frequency and tne longest pipe length L for which the pressure drop
dp/ dx may be assumed constant tne flow is consigered to oe incompres-
sible (i.e.U0<<a). The pressure is prescribed at potn ends of the pipe:
p=0 at tne open enu of the pipe at x=L; and p:kaicosan t) at the inlet
to the pipe at x=0. When U<<a and can be neglected, one obtains the

wave equation for the spatial and temporal pressure distribution
c‘p/dt2=a‘d‘p/dx‘ .1

The solution of (z.14) for tne given poundary conuitions is:

5 sin g (L-x)
pix,t) = — (L—x)+p1 — sinwt 2.15
L sin ; L

Pressure gradient tnerefore becones:

W
cos ~ (L-x)
P (x,t) = - — - Y & sinut

a _. W
=L
sin =

.16

n

Ine pressure gradient may be regarded as spztially constant provided
x w/a<<1 for all x concernea, or that tne lent.: of tne pipe L is much

shorter than the acoustic wave lentn L<<2 Ta/w .

A more accurate estimate of the limitation on tihe frequency of os-
cillations of a siigntly compressible fluid in a pipe of a given lengtn
is ootained oy consiaering the continuity equation for the pulsating

part of tne oulk velocity <u>

» NI s .~
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) a<u> _ C oy
3T (p°+<p>) + (p°+<p>) % - 0 <. 1

=r. btie Locentus civctien

a\ PP >4 9<L>/ Jtz= I P>/ Fxr-eX 1w>/h e 1
vocre < T,. is ¢tne osciiiztinz part of tne wall shear  stress
< TF>=-H( a<w/ ar)u. ty assuning that tne fluic is only siigntly coa-

rressible, ( i.e, <p>/ p°<<l). ecuations (z.17) anc (z.1v) can de line-

arizeu to zive

I<p> I<u>
s R 2.1
anc
<> a<p> <t >
o ot " T9x ~ TR cecy

ine pressure term can be elininated froc (:<.20) using the adiaocati:

sound velocity

.ogp

ire wall snear stress < Tw> oay be elininated oy following the

eguation
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and equation (2.1), where i and p are the steady wall shear stress and
pressure, respectively. Shear stress and pressure pulsations amplitude
ratio cJT and relative phase shift ¢T were calculated using the analiti-
cal solution of Uchida for the laminar pulsating flow. From the equa-

tions (2.1) and (2.22)

<t> _ o Y ei(¢1.*'1>q)
w %

The steady bulk velocity U and the steady wall shear stress ?" are re-

lated by the equation

We therefore obtain

7,28 p, V/R (c,r / oq)exp(i(¢,r + ¢q)) z.e3

By assuming harmonic oscillations, the time derivatives can be re-

placed by the operator iw , so that 3<p>/3t=jwp ., and 9<U>/dteiw U,

)
Equations (2.19) and (2.20) were therefore rewritten in the form:

du .
1 iw
= . =P 2.c4
dx po 1
and

D e
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dp_l = o -l— (iwp + 8p°\) O_T el(¢‘t+¢q))u -
dx a? o R Gq 1 )
[ tiltir N 4

.~U’/’<.. ‘:-.'."2,' U‘ loiu
;‘cti;x‘=c111p, ec
ihek A of
‘1 10 / (%
anc
- 10, 8iv 01 e(¢1*¢q)
Y, = (14 =— — ¢ )
1 a? R

sntrowucing Y=¢,1' tae soiution ©f (w.iv) €or dz prescitow dn tio iz

b‘::A‘cxp\- Y::)ﬂ.r.cxp( Yx) Cell

veins (2.¢9) anu (2.0 the censity aletribution pecomes

D'=L1/L°exp\- Yx)-Li/aocxy\ Y::) el
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10 determine the integration constants A' and A, the boundary con-
ditions at both ends of the pipe are used, it the outlet the amplitude
of tne pressure pulsations vanishes and so does thus the amplitude of
density pulsations pl(x=L)=J. For the given amplitude of pulsations in
tne flow rate, Q‘, the boundary condition on the amplitude of the bulk
velocity pulsations at the inlet is: U,(x:D):Q,/ "Rz. Taking into ac-

count the boundary conditions the final form of the solution is:

Q

u. = L cosh y(L-x)

1 R2 cosh Y, 2.30
o = Q  sinh y(L-x)

1~ gz coshy, 2.31

As a quantitative measure of the flow dependence on frequency a
phase shift between the bulk velocity pulsations at both ends of the
pipe was chosen, 1t is obvious that for the flow to pe independent of x
this phase shift has to vanish. The complex parameter which governs the
phase ofU1 at different locations along the pipe is Y, which in itself
depends both on the length of acoustic wave A=2nmaA and on the fre-
quency parameter . The parameter is dependent on the radius of the
pipe and on the viscosity of the fluid. The major factor governing the
phase shift was found to be the ratio A/L (i.e. the acoustic wave
length to the lengtn of the pipe). Fig.2.4 gives numerical results of
solution (2,30) for the parameters used in this experiment (R=z1,65

2

em,L=1700 cm) and v=0.16 ca /sec. 1t can be seen from Fiz.2.4 that for

L/A<0.08 the resulting phase shift is less than . Accepting this
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value as the upper limit for whicn one zmay assume @dp/ dx=const. gives
the maximum permitted frequency parameter a=15, and pulsation period
lonzer than 0.5 sec. 1t is worth noting tnat for L/A >0.2 the flow can

no longer be regarded as one-dimensional, even by a crude approximation.

2.4 Calibration of Velocity and Pressure Sensors

Velocity measurments were made with a rake of 9 not wires, distri-
buted evenly in the radial direction at distances equivalent to
ar/R=0.12 between the neighbouring wires; so that when the first wire
was on the center line of the pipe, the Y-th wire was located at a dis-
tance 0.5 mm from the wall (i.e. at r/k=0.97). All velocity measur-
ments were taken at the exit plane of the pipe. A 10 channel constant
temperature hot-wire anemometer and 10 channel amplifier, both buiit by
the electronic shop of the School of Engineering of Tel-Aviv University
were used in the experiment. The outputs of the amplifier were connect-

ed via an analog to digital converter to a DEC PDP 11/60 minicomputer.

The calibration of the hot wires is done in a wind tunnel, which
provided a stable velocity stream between 30 om/sec and 15 m/sec.
Although flow reversal was avoided in the experiment, very low veloci-
ties occured in the pipe as a result of the superimposed pulsations. 1t
was thus necessary to calibrate the wires at the lowest velocities anti-

cipated in the experiment.
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1t is wecil xnown, nowever, tnat standard Pitot tuoe is not a proper
instruzent for measuring air velocities oelow 1.5 m/s. in alternative
way for accurate ucasurment of low velocities may be vased on the fre-
quency of vortices shed behind a circular cylinder. 1nsert in Fig.2.5
(Kovazsnay (194y)) shows the dependence of the frequency of shedding,
i.e. the Strouhal number St=fL/U, on the heynolds numbder of the cyl-
inder suggesting that St is independent of Re for ne>300. The later
measurments by Roshko (1655, 1501) confirmed the results snown in
Fig.2.5 for he>300. At Re<300 St decreases with decreasing ie; and the
scatter in the data collected by various investigators is very large in
this area. Different empirical formulae showing the dependence St=f(Ke)
(see, for example, Goldstein (1905), bBerger and Wille (1972)) are not

very accurate and may cause significant errors at low Heynolds numbers.

1n this experiment a cylinder 1.269 cm in diameter was used for tne
velocities under consideration (U>35 cm/sec); ke thus was larger than
300 and Strounal number therefore could be regarded as a constant. The
dependendence of St on Ke was measured for Re>1700, where a Pitot tube
could provide accurate measurments of velocity, and it was assumed that

the mean value of St could be extrapolated to lower Reynolds numbers.

A hot wire was placed several diameters downstream of a cylinder at
a radial location at which the vortex shedding frequency is detected
most clearly on an oscilloscope, and the output of the anemometer was
sampled digitally by the computer. The sampling frequency was fixed by

the signal frequency, which was roughly estimated from monitoring the

cwdoodt Az, S
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oscilloscope. The minimum sampling frequency chosen was approximately
twice the expected signal frequency. A pbuffer of 2040 sampled data po-
ints was Fourier transformed, and the power spectrum of the signal was
calculated, The procedure was repeated several times (usually 4 to 10,
depending on sampling frequency), the average specrum was calculated,
and the frequency of the most energetic component was assumed to be the
signal frequency. The repeatability of the frequency measurment was

better than 0.2% which seems equivalent to the resolution of the metnod.

On the Fig.2.5 the measured dependence of St on ke is shown;
Fig.2.6 gives the calibration curve for the dependence of flow velocity

on the vortex shedding frequency.

The detailed description of the hot wire calibration procedure may
be found 1in the thesis of Oster (1980) and in wygnanski and Oster
(1561). Seven calibration velocities, determined by the vortex shedding
method, were used. A 4-th order polinomial, giving the dependence of
the flow velocity u on the output voltage E was found by a least square

method from the 7 measured points:

u=a13u+a223+....+a5

The calibration curve was further checked for several additional veloci-

ties.

1n order to calibrate an x-wire the output voltage was sampled at

x &
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11 different angles (in the range of 27°>8 >-27°) at each one of T velo-
cities used. The output of each wirc depends on both aosolute value of
the velocity vector [ and its angle : E,:E,(ﬁﬂﬁ ) and E2=E2(ERB ).
it was assumed that from the measured values of E‘ and bz, U and B can
be wuniquely determined. From the measured 77 calibration points the
4-th order polinomials, giving the dependence of the apsolute value of
the velocity vector !Iﬂ and its angle{! on the output voltages of both
wires E' and E_, were found

2

4 m
ﬁLa’h' +a252 +o.048, E,+a £ +a

3 14727715

.4 Y -
Bsblb.l +02b2 +...+b‘3b'+b‘uE2+b‘5
witnlﬁ]and B known the velocity components were calculated from the

equations uzlicosg and v=Uping .

A Validyne model DP215-30 pressure transducer with CP15 3Sine Wave
Carrier ULemodulator was used to measure the pressure., The pressure
transducer was connected by a 5 cm long tygon tube to tne second section
of bell=shaped nozzle. For the calibration of the Demodulator output a
Fuess micromanometer was connected in parallel with the transducer. The
pressure transducer provides linear responce in the whole range of pres-
sures. The dynamic responce of the pressure tranaducer (1000 Hz) was

more than adequate for the present purpose.
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2.5 Data Aquisition

A D.C. voltage corresponding to the output of the anemometer in
absence of flow was subtracted from the signal before amplification in
order to take advantage of the full range of the A/D converter which ac-
cepts signals between 25 volt. The converter having a 12-bit presision
provides a resolution of about 2.5 mv., The amplified anemometer signals
together with the output from the pressure transduser were sampled at a
predetermined frequency, the sampled data was converted into 16-bit

words and arranged in buffers.

At the initiation of a measurment the period of pulsations was de-
termined by the computer. Two different methods to measure the period
were used in this work, the first based on the 50 Hz clock of the com-
puter, and the second on ! MHz clock. An optical switch (Monsanta MCA8)
was used to obtain trigger signal, A cylinder 1.5 mm in diameter, con-
nected to the driving motor of the piston pump, passed at each revolu-
tion trough a narrow gap of the optical switch, causing change in the
output current, which operated TTL Schmidt trigger. In the first method
the time ellapsed between two neighbouring trigger signals, supplied to
the interrupt input of the computer, was measured by 50 Hz clock. The
resolution of a single measurment is 20 msec, the final result was obta-
ined by averaging 10 measurments. In the second method the trigger sig-
nal served as input to the A/D converter and was sampled at a predeter-

mined sampling rate, controled by the 1t MHz clock. The period was der-

Qe
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iveu from tne nunoer of sanpleu points cetwesn w0 econscguent tri.gor
RO s toe time interval oetwesn saiples, The resolution of tiis
by J2pinds on osaapling froguency are was in principle orders of aezg-
nitude  aore accurate tnan in tue first methou. 1n tnis case too, thne

firnul period was determined by averaging over 10 cycles.

with the period of pulsations known, the sampling frequency was
fixed so tnat 102k, 2048 or 4096 points were sampled per channel per
period in order to facilitate tne processing of uata using a fast four-
ier iransforma (FFT). 4an estimate of the repitability of the period frou
one event to another was made counting tne numper of saapled points over

2any cycles, and it was found to oe petter tnan 0.3%.

iwo different sampling methods were used. In the first methoa a
tri.zer signal, supplied to the interrupt of the computer, initiated tne
saiapling wnicn lasted precisely for 1 period. From tne sampled data po-
ints appropriate velocities and presssure were calculated and the re-
sults were recorded on a magnetic tape. aAfter the data recording was
conpleted the coamputer was ready to accept new information. All x-wire,
=n¢ 032 of normal-wire rake data was acquircd using ¢nis metnod, wnlcn
nes tian  advantage that 1t does not constrict tie saapling frequency.
e are, nowever, two drawbacks, Firstly, tne overall acquisition
tize 1s wmuch longzer than the time of measursent, oecause the computer
rcoaires additional time to convert tne signals to velocities and pres-
<arcs and to record the processed Jdata on tape. Tlhe overall duration of

tu: «.asurment increasd thus by a fzctor of 2 in the case of the noraal
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wires and by a factor of 4 for the single x-array. The second drawback
stems from the fact that the duration of the measurments corresponds ex-
actly to one period of pulsations, thus no spectral information can be
obtained for frequencies wnich are lower than the frequencies of pulsa-

tions.

A different sampling method was used therefore in conjunction with
a rake of normal wires. The data points were sampled continuously dur-
inz more than 8 periods of pulsations. The memory was divided into two
buffers, and while one buffer accepted the information sampled, the con-
tents of the other buffer was recorded on a magnetic tape, thus provid-
ing the possibility of essentially unlimited in length continuous sam-
pling. The output of the optical switch was connected to an additional
input channel and provided phase information. A total of 11 data chan-
nels were thus sampled: 9 channels contained velocity information, 1
pressure and 1 phase information., This method does not have the two
drawbacks of the mentioned before, but it is limited to a sampling fre-
quency which could not exceed 1800 Hz. This frequency however was quite
adequate in the range of Re considered. It should be noted that in this
method the "raw" data was recorded on the tape, and the calculatjons of

velocity and pressure were made at a later stage.

In the latter type of sampling single continuous record consists of
more than 8 periods. In laminar flow 7 recordes were usually acquired,
providing 56 measured periods of pulsations containing 1024 sampled po-

ints 4in each period. In turbulent flow, the number of records was usu-
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ally 30, giving 240 periods with tne number of points in each period
ranging from 1024 to 40v¢, depencing on the duration of the period. in
laminar flow, tnorefore, 57344 points were sampled for each data channel
per measurment, while in the turoulcnt case the number of sampled points

[~
per channel varied from 2.5%10” to 10°.

2.5 Preliminary Measuraments

In most cases velocity aeasurments were taken in laminar and turou-
lent flow regimes consecutively while keeping all the flow parameters,
(e.g. mean heynolds number, period of pulsations and piston stroke)
constant., Before recording the data on magnetic tapes, preliminary
measurments werc made, in which the data was sampled at the rate of 1024
points per channel per period for several periods. The time mean velo-
city was calculated for each channel by averaging, and mean Reynolds
numper and flow rate were calculated by numerical integration using a
Simpson formula. The exact distances between tne wires were measured
with a microscope and were used in the integration procedure. In lami-
nar pipe flow the center line velocity is double the mean bulk velocity.
This fact, coupled with independence of the mean flow rate from the
state of the flow (whether laminar or turbulent) was used to allign the
rake at the exit of the pipe. The preliminary measurments also served

as a simple check of the drift in the output of the anemometers.

1t was observed that the hot-wire which was placed at a distance of

0.5 mm from the wall overestimated velocity values because of heat
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transfer to the metal wall whicn was absent in tre calibration condi-
tions in the wind tunnel. &t tpe reynolds numbers usea, tne velocitizs
near the wall were usually less than 0.7 m/sec. 1aus, tae neat transfer
was greatly influenced by free convection, which is strongly depenaent
on the flow geometry. For this reason the mean output of the last wire
was ignored in the integration procedure and‘served only for obtaining
information on the oscillating and turbulent components of velocity.
The non-slip condition at the wall was taken as an additional point for
the purpose of integration. The hot wire placed on the center line of
the pipe did not contribute to the flow rate oecause of its vanisning

radial distance.

For all radial-rake data, only seven measured velocities were used
to determine the mean flow rate. The relatively small number of data
points and absence of reliable information near the wall, contributed to
a discrepancy between the Re calculated from the velocity profile and
measured with a rotameter of about :5$ This estimate was obtained using
the fact, that the flow rates were independent of tne flow regime, and
compairing the results obtained in laminar and turbulent flows with the
constant rotameter reading. The accuracy of this measurment did not ap~
preciably changed by changing tne flow regime in the pipe from laminar

to turbulent.
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CHAPTER 3

EXPERLMENTAL RESULTS

3.1 Mean Flow: Steady vs. Pulsating Velocities and Pressure

Fig.3.1a represents time mean velocity profile measured by an
x-wire probe in laminar pulsating flow and normalized by the center-line
velocity. The velocity profile presented was taken at Re=U#000, period
T=1.34 sec, relative amplitude of bulk velocity U1/ﬁ;20$. In Fig.3.lb
three measured turbulent velocity profiles are shown, one of the pro-
files was taken in steady flow at Re=4000, while for the other two the
amplitude of pulsations was varied. No significant difference can be
observed between steady and pulsating time mean velocity profiles wheth-
er in laminar or turbulent flow. This result could be anticipated in
fully developed laminar flow, because of the resulting linearity of the
Navier-Stokes equations, but in turbulent pulsating flow it indicates,
that the time mean Reynolds stresses are not affected by the oscilla-

tions.

The friction coefficient A , calculated from Darcy's formula

T/ s AL/D T/2
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did not show any difference between steady ond pulsating flows for ooth
laminar and turbulent rezimes. The measured friction coefficient in
laminar flow was higher by aoout 10a», than the theoretically predicted
value of 64/ke. In turbulent flow the value of A obtained is in fair
agreement with the values quoted in the literature for smooth pipes (sce

n.ochlichting (1975)).

A number of factors might have influenced the accuracy at waica
Awas defined. 1) The accuracy of the measurment of the mean bulk velo-
city, as discussed above. 2)Pressure was measured in the entrance noz-
zle rather than in the develcoped region of the pipe in order to increase
the resolution of the measurment, Pressure differences at Rez4000 along
tne entire pipe were approximately 2 mm of water in lamjinar flow ana &
mm of water in turbulent flow. The measured pressure therefore included
the influence of the developing flow in the entrance region and tne dy-
namic head component dﬁz/z. 3) 1t is difficult to null the output of
the pressure transducer because of reiatively low values of mean pres-

sure, as compared to the pick pulsation values.

3.2 Phase Mean Values: Laminar vs. Turbulent flow

Phase~averaged data is obtained from the measurments discussed for
ooth laminar and turbulent flow regimes thus providing the first two

terms in the decomposition (1.1)., Fig.3.2 shows a typical dependence of




phase averaged velocities in a tuoulent pulsating flow during one geri-
od, Ine concozaitant rcfercence pressure oscillations are snown at tne
top of tne Figurs, crach velocity trece is normalized on tne time .2cen
velocity on tne center line of the pipe., ine uppermost veloeity tracc
corresponds %*o r/R=0 (i.e. the velocity was wmeasured on thne center
line) and the oottom trace represents the veiocity at r/n=i.s7. vurir s
2 fraction of tne period thc pressure at tne inlet of tac pipe is iowar
tnan at the exit, peinting to tne existance of an adverse pressure sr:-
dient. The velocity however does not reverse itself at all radial posi-
tions and at all phase angles., 1The relations vetween the aaplitudes anc
the rhase angles of pressure and velocity oscillations may thus lcad tc
3 situation when at a portion of tne period tn; directior. of tiae flow is

opresite to the instantaneous direction of tne bﬁg%surc sredient.

X,
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Thne validity of the assumption tnat pressure ani vei ity oscilla-
tions are harmonic may be checked Dy representing tne e;::ZEIg\averagea
siznzls in Fourier series. 1he "power" spectra were calculated,\gng tue
ratio of the two first coefficients c(2w)/c{w), i.e, for the coe;}i—
ciert of the fundamental frequency and its first haraonic, was deter-
ained. For moderate amplitudes of velocity pulsations, this ratio was
less than 3% thus providing the justification for the harmonic assuap-
tion. At high amplitudes, in turbulent pulsating flow, relaminarization

occurs making the contribution of the second harmonic more significant.

3.2.1 Qscillating Part of the Velocity Profile
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Phase locked velocity profiles can be obtained from the phase aver-
aged velocity records., Since the time mean velocity profiles are inde-
pendent of the pulsations, it is more instructive to plot the oscillat-
ing part of the velocity profile only (i.e. the part represented by the
second term in equation (1.1)). 1n the laminar case a comparison with
the theoretical predictions of Uchida is performed. Although at least
1024 points, sampled in each period, made it possible to plot phase
locked velocity profiles st 0.3o intervals, it suffices to plot eight
profiles, with phase difference of 450 for the purpose of the following

discussion.

In laminar flow the shape of the velocity profiles depends only on
frequency parameter a . The oscillating part of the laminar velocity
profiles corrsponding to pulsation periods T=0.78 sec (a =11.8) and
T=2.4 sec ( 0=6.7), respectively, are shown in Fig.3.3a and Fig.3.3b.
The symbols represent the measured values of the oscillating velocity
while the solid lines represent the theoretically calculated profiles,
normalized and matched to the measured velocity on the center line. The
agreement with the theory is good. 1t may be seen, that for short peri-
ods of pulsation the flow is quite uniform in the central core of the
pipe at all phases of the cycle. Sharp velocity gradients occur near
the wall. The extent of the wall region is proportional to Aw. Tnis
region is referred to in the literature as the Stokes layer in view of
the analogy with the oscillating plane boundary layer whioh was analysed
by Stokes. For large a the Stokes layer beccmes narrow causing the vel-

ocity gradients to inorease,
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In the turbulent flow important parameter is the ratio between the
thickness 53: of the Stokes layer and viscous sublayer év . If one as-
sumes that the effects of pulsations are limited %o the Stokes layer
while the effects of turbulence are excluded from the viscous sublayer
(i.e. from 0<yu,/V <5) then for 6St/6V <1 the pulsating part of the
velocity profile 1in laminar and turbulent flows snould oe identical.
This hypothesis may be checked by assuming that the thickness of the
viscous sublayer is equal to 5v=5 V/u,, and tne friction velocity u,

may for the sake of convenience be related to the mean velocity U by the

power law (see Schlichting p.508)
u,2=0.022507 4 (v /p) 7Y

one obtains the following expression for &v :

8, =5V /ug=60R/Re’®

which renders the desired thickness-ratio between of the two layers

L 7/8
GSt/ év-Re /60 a

At Re=zU4000 dvxn=o.ou thus for T=0.78 sec, 55,/ 6v=2'0' and the
effects of oscillations on the radial velocity distribution are visible
(Fig.3.ua). At lower frequencies turbulence penetrates into the Stokes

layer and destroyes it, and the frequency parameter @ is no longer im-
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portant resulting in 2 much more uniform velocity profile (Fig.3.4b re-
cordea at 1=2.4 sec, giving Got/Gv =3.5. 1n order to reduce further
the thickness ratio Gat/sv the ne was reduced to 2900 for T=0.55 sec
resulting in Gst/sv =1.2. Tne measured oscillatory velocity profiles
arc plotted in Eig.s.ﬂc. There is a reasonaole similarity between the

measured turbulent (symbols) and calculated tneoretically laminar (solid

line) oscillating velocity profiles for this case.
3.2.2 Radial Distribution of Velocity Phase Angle and Amplitude

The harmonic character of pulsations enables one to represent the
instanteneous velocity by an exponential form (£q.(1.3)), and aleviates
the necessity of describing the temporal and spatial changes in velocity
by plotting a large number of phase averaged velocity profiles. Two
functions can fully describe the oscillating component of velocity at
the imposed frequency: (i) the amplitude distribution u1(r); (11) the
phase angle 0u(r) relative to tne phase of the pressure oscillations.
In order to obtain these functions, tne phase averaged velocity was

Fourier transformed

N
u(r,t)=a _(r)+ 2(tn(r)cos(nt/T)+bn(r)sin(nt/T)) 3.1

n=1
where N is half of the number of points sampled at each period, and T is
period of pulsations. The coefficients, that describe the oscillations
at the forcing frequency 1/T, were then used to find the amplitude fuc-

tion u,(r)zla:(r)+b§TFT and the initial phase angle

Al ey W o
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¢°(r)=arctan((b,(r)/a,(r)). trom tne initial phase of the velocity os-
cillations, ¢tne initial pnasec of ¢tne pressure oscillations was suo-~

stracted, giving phase angles ¢u(r) relative to tne pressure,

in tns 20sence of viscosity, tne pressure, oeing tine only driving
force, 1is in phase with the acceleration of the fluid. 1Inhe velocity
lags by 90o benind the acceleration, and thus also lags oenind tne pres-
sure. The radial distrioution of the phase angle is shown in Fig.3.5
for Re=z4000 and various periods of oscillations. The solid 1lines show
the theoretical prediction of Uchida, while the crosses and the trian-
gles give the measured phase angles in fully developed laminar and tur-
bulent flows, respectively. A good agreement with tne theory was obta-
ined in the lzainar case, witii tne cxception of very low freguencies for
which the 1influence of the entrance region becomes more pronounced, as
it will be described later. The pnase lag on the center line in laminar
flow 1is usually 90°, and it decreases to approximately 450 near the

wall,

In turbulent flow the results appear to be very different. The
frequency parameter a =Rvw/V mo longer controls the flow because the re-
levant viscosity becomes some kind of turbulent exchange coefficient € ,
which is orders of magnitude larger than V' . The effective frequency
parametera is thus much lower, and the phase lag of the velocity in the
central region of the pipe decreases more quickly with increasing the
period than in the corresponding laminar flow. 1n contrast to the lami-

nar flow, the phase lag increases towards the wall. The qualitative na-
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ture of the result zs noticed oy namaprian and wu ilvod). & a&ore ceta-

iley explanatior «f tils pnenogenon waich is vzzew on & 3iaple turoulent

acdel for the pulsating pipe flow will de Giscussec later.

The radial Jistribution of the phase lzz in velocity in the turbu-
lent flow 1is both amplitude and mean ne¢ dependent. The dependence on
the amplitude of pulsations 1is rather weak., The radial distribution of
the phase lag for two amplitudes of pulsations at two frequencies is
presented in Figures 3.6a and 3.o°. For longer periods of pulsations
(T=2.4 sec) changes in amplitude cause no concommitant change in the
central region of the pipe. At higher frequencies (T=1,25 sec) the in-
fluence of the amplitude on the phase angle is felt accross the entire

pipe, Nevertheless, a large increase in the amplitude causes & rela-

tively small change in the phase angle (about 30).

Tne depencence of the phase angle on the mean Heynolds number is
more pronounced. h representative viscosity increases with increasing
Re, reducing effective @, The velocity phase-lag therefore also decre-
ases with increasing Re (Fig.3.7). On the other hand, the viscous sub-
layer becomes thinner with iancreasing Re, and the radial distribution of

the phase~lag at Re=7500 is practically constant.

A qualitative difference between laminar and turbulent pulsating
flows also exists in the radial distribution of the amplitudes of the
velocity oscillations. In laminar flow, the maximum amplitude of the

velocity oscillations occurs in the Stokes layer near the wall, as no-
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ticed by Ricaardson (1927/20), while in turbulent flow thne maximum am-
plitude occurs in the center of tae pipe. 1lne radial distribution of
the measured amplitudes of velocity oscillations in laminar and turbu-
lent flows resulting from identical forcing is snown in Fig.3.8. 1lhe
tneoretically calculated amplitudes in laminar flow which were matched
on the center line (Uchida (14956)) are shown also in Fig.3.u for compar-

ison.

The amplitude distribution of the axial component of velocity in
the turbulent flow is nearly uniform in the central region of the pipe,
out decreases rapidly near the wall. The amplitude of pulsations in
laminar flow also decreases near the wall. lincreasing the mean He or
decreasing the frequency of oscillations lead in turbulent fiow to more
uniform distribution of the velocity amplitudes for the reasons already

discussed in conjunction witn the radial distribution of tne phase lag.

3.2.3 The Influence of the t£ntrance Hegion

The disagreement betweeu the calculated and measured phase angles
of velocity at low frequencies may be attributed to the influence of the
entrance region on the flow. To check this further, a second pressure
transducer was placed 100 diameters upstream the exit of the pipe, (i.e.
400 diameters from the first one, which was located at the entrance of
the pipe). The flow at x/D=z400 is considered to be fully developed,
thus the comparison between the two measured pressures could provide in-

formation about tne development of pressure gradient along the pipe.

R TLT PR,
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. phase zhift in pressure pulsations vas found to exist between
tres. two positions and is showrn in Fig.3.9a as & function of the pulsa-
tion period in botn laminar and turbulent flows. No mnotable amplitude
dependence was found in the measurments which were made at mean Res4000.
at leng periods of forcing, vressure at the exit leads tne pressure pul-
sations at tne inlet of the pipe. The phase difference is amuch nigher
in laminar, than in turbulent flow, and decreases in both cases with de-

creasing period of pulsations.

The calculated values of tne same phase shift are 3nown also in
rig.s.v . The calculations were made for the appropriate values of Re
and T according to the theoretical calculations of Atabek and Chang
(1961) for the laminar pulsating flow in the entrance region of a pipe.
It is clearly seen that the phase snift angles are underestimated by tne
theory. These results support the conclusion of Denison (1970), wno
found that the theory of Atabek and Chang predicts a faster evolution of
the pulsating flow to the asymptotic, fully developed form, than ob-
served experimentally. The conclusion of Denison is based on measur-
ments of pulsating velocity profiles in the laminar entrance region of
tne pipe. 1t should be noted, however, that qualitatively the predic-
tion 1is correct: the pressure at inlet lags behind the pressure in the
fully developed region, and the pnase difference increases with increas-
ing the period of pulsations. The influence of the entrance region in
tne turoulent pulsating flow is much weaker, than in laminar flow, and

phase differences are therefore less pronounced.
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At higher frequencies (T<0.7 sec), the sign of the pnase difference
cnanges. Tne finite value of the sound velocity becomes important at
these frequencies, and the pressure downstream lags behind the changes
in upstrean pressure as predicted in Section 2.3. The measured phase
differencies are slightly higher than the theoretically calculated. The
discrepancies may stem from the finite angular resolution in the experi-
nental setup (about 0.3o for each transducer) and the hydraulic approxi-
mation, wused in the theory. 1t is interesting to notice, that there is
practically no difference in the measured pressure phase lags between
laminar and turbulent pulsating flows at tnis range of frequencies (T<1

sec).

An additional way to check the influence of the entrance region is
to compare the amplitudes of the pressure pulsations at different stre-
amwise locations. As it was mentioned earlier, one transducer was
placed at inlet of the pipe which is 500 D long, while the second trans-
ducer was placed 100 D from the exit. Thus for a linear distribution of
pressure along the pipe the ratio of the pressure amplitudes should
therefore be equal to 0.2. This ratio would be reduced as a result of
the influence of the entrance region. The accuracy of measuring the am-
plitude is much better than the accuracy in measuring the absolute stea-
dy pressure because the former is independent of the error in the zero

setting.

Fig.3.9b showes the measured ratio of the pressure amplitudes in

both laminar and turbulent flows. There is no significant difference
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petween these flow regimes; the results suggest, however, that the in-
fluence of tho entrance region diminishes with increasing frequency. 1t
is worth noting that the effects of the entrance region are much
stronger on the steady, than on the oscillating parts of the flow. This
stems from the fact that the oscillating velocity profile in fully de-
veloped laminar, or turbulent flows, does not differ significantly from
the slug-type velocity profile, which enters the pipe from the settling
chamber. The theory of Atabek and Chang does not predict notable nonli-

nearity in the distribution of the pressure amplitude along the pipe.
3.2.4 The Relation between the Pulsations of Pressure and Flow Rate

The mechanical power W, neccessary to push the flow at a rate Q
through a pipe in which the pressure drops by Ap is proportional to the
product Q 4p. In pulsating flow the power is time dependent, and the
amplitude of power oscillations 1is determined by the amplitudes and
phase relations between the pulsations of the pressure and flow rate:
wsp,Q,eos ’q‘ 1n order to compare the amplitudes of power pulsations in
laminar and turbulent flows the relation between P, and Ql has to be

known.

Fig.3.10 shows the dependence of the measured amplitude of pulsa-
tions of bulk velocity on the amplitude of the imposed pressure oscilla-
tions for two frequencies., Only small differences can be noticed in the
responce of the velocity amplitude to the imposed forcing in laminar and

turbulent flows.The bulk velocity amplitude is proportional to that of

X0
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pressure, and tne difference between the slope of the laminar and the
turbulent dependence is within the experimental error. For a given am-
plitude of pressure pulsations tne amplitude of the bulk velocity is
nigher at lower frequency as it follows from the expected dependence of

cq on the frequency (see Fig.2.2).

At a given frequency of pulsations only the phase difference ¢q
can contribute to the difference in the amplitude of power pulsations
between the laminar and the turbulent flows. 1n laminar flow tne phase
angle does not differ appreciably from 90° (it changed from about 650 at
T=0.56 sec to about 7d° at T=2.4 sec). 1In the turbulent flow, changes
in frequency cause a more significant decrease in the phase lag of the
flow rate behind the pressure, as it qualitatively can be concluded from
rig.3.5. At high frequencies, however, there is only a small difference
in ¢q between laminar and turbulent flows; at T=0.56 sec it is about
650 in both cases. 1n turbulent flow ¢q decreases fast with decreasing

frequency (at T=2.4 sec ¢q=50°), and cos ¢q therefore becomes larger,

than in the corresponding laminar flow.

There is thus no significant difference in the amplitude of the
power pulsations between laminar and turbulent flows at high frequen-
cies, where the oscillating velocity prifiles are very much alike (see
Section 3.2.1). Decreasing the frequency increases the amplitude of the

flow rate for given pulsations of pressure and the amplitude of the

power pulsations grows in both laminar and turbulent flows; the growth .

in the turbulent case is faster because of stronger dependence of ¢q on
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frequency.

3.3 Turbulent Characteristics

There 1is no doubt, that a lot of information about the structure of
the ¢turbulent flow is lost by the conventional and phase locked averag-
ing procedure. In Fig.3.11 the instantaneous axial u and radial v velo-
cities, measured during a single period are shown and compared with the
phase averaged values; the dependence of the pressure on time is shown
in the upper curve, Several conclusions could be drawn from this
Figure: 1) the phase averaged value of the radial velocity vanishes, so
there is no Reynolds stress component, connected with the orderly pul-
sating part of flow as expected in the fully developed pipe flow; 2)
the intensity of radial velocity fluctuations is of the same order of
magnitude, as the intensity of axial velocity fluctuations; 3) there is
some evident dependence of the turbulent activity on the phase of im-
posed oscillations which is expressed in the changes in both amplitude
and frequency of the turbulent velocity fluctuations (see also

Fig.3.12).

The turbulent activity becomes increasingly dependent on the phase
of forcing at higher amplitudes of the pulsations. The oscillating part
of velocity during a single period, measured by the hot-wire rake and

compared with the signature of the pressure oscillations, is shown in

- & A5 i
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¥iz.5.12. A partizl isainarization of the flow is ooserved during tie
tine corresponiinz tn tne :inicunr velocities proluced by tre foreing., &
"arecakcown" Cowug to occur at a tiae corresponding to the masimum in-
stanteneous veclocity, wncn tns anplitude of turoulent fluctuations in-
creases quite sudcenly. 1he decrease in tne amplitude of the fluctua-

tions on the dccclerating portion of the cycle is relatively gradual.

At even higner amplitudes of pulsations the flow becomes completely
laminar. At these amplitudes the instantaneous fe falls below its crit-
ical value during a fraction of the period. Wwnen the duration of tne
flow at tne suocritical Re is sufficiently long, a complete relaminari-
zation occurs. The mean velocity of the flow at re=4000 1is about 1.0
m/sec, 30 that even at lowest frequency of pulsations (T=i4,5 sec) each
fluid particle remained in tne pipe for severzl periods. The flow |is
naturally laninar at he=4000, and tne transition to turobulence was trig-
gered artificially oy a perturbance, which was purposely placed at the
entrance to tne pipe. Thus if the flow relaminarizes further downstre-
am, it will remain laminar throughout the pipe. This effect was noticed
by a nuaber of investigators, cited earlier (e.g. Sarpxaya (1966) and

Ramaprian and Tu (1y00)).

3.3.1 The 1ntensity of Velocity Fluctuations

The distribution of the time averaged, root-mean squared, turbulent

fluctuations in the axial and radial directions for steady and pulsating

flows is compared in rig.3.13. The velocity fluctuations are normalized

+Shn - VNl A2, -
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oy the friction vclocity u, winicn was calculated from tsne time aean
value of thc pressurs drop (u,=1:.1 ca/sec at hne=4000). There i{s no

sigsnificant diffcrence oetween time mean values of‘v’u'2 andv’v'2 in steady

and pulsating flows. 4 small but consistant decrease in v'z can be no-
ticed (Fig.a.jsb), with increasing amplitudes of pulsations. The dis-
trioution of F andv/\:T? is in good agreement with the results, obtained
for steady turbulent pipe flow by Laufer (1454) and by wygnanski and

Cnampagne (1973).

measurments of Laufer vere made at Re=500G0, wnica is higher by
order of magnitude, than the prevailing Re used in the present investi-
gation. Nevertheless, the comparison of the normalized results is still
possible, because Hi> values of the turpulent velocity fluctuations nor-
malized by tne friction velocity are practically independent of Re. On
the other hand, u, 1is dependent on Re, and its instanteneous values
chanze in the pulsating pipe flow. Thus, u' and v' are pnase dependent.

This conclusion was reached by examining the recorded velocity depen-

dence on time, as shown on Figures 3.11 and 3.12.

The phase dependence of the RMS values of velocity fluctuations 1is
plotted in Fiz.3.14, after tne calculated data was smoothed slightly by
a running average procedure. The smoothing was necessary because of re-
latively short lengtn of the ensumble used in the averaging process (200
measured data points at each phase angle). A numoer of conclusions can
be drawn froa the examination of this Figure: 1) the RMS values of

axial and radial velocity fluctuations are phase dependent; 2) the
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phase angle of the intensity of tine axial and radial velocity fluctua-

tions is not identical; 3) the pnase dependence of /(u'2> and /<v'2>

is obviously non-harmonic, the iZrowth is notably faster than the decay,
as it was noted previously wnile examining the instanteneous velocity
records over a single period.

in order to compare the radial dependence of the phase of /EGTE;
and J <v'=> with the phase of the mean veloclty, it was decided to limit

the analysis to the fundamental frequency only, inspite of tne

non-harmonic behaviour of this ensemble averaged data.

-

Figure 3.15 shows the phase lag of v <u'2> behind the pressure and
compares 1t to the phase of the mean velocity, for three different fre-
quencies of pulsations put approximately for identical amplitude of the
bulk velocity. The higher the frequency, the larger is the phase lag of

Y <u'"> benind tne fundamental oscillation of the flow veloeity. 1t is

interesting to note, that the phase angle of vku'2> changes signifi-
cantly with the change in the radial position, being maximum at the
center of the pipe, and attaining a minimum in the region corresponding
to the maximum turbulent production. At lower frequencies the pulsa~
tions (I>2 sec) /:;;?; at r/f=z0.7 may even lead the phase averaged vel-
ocity. 1n Fig.3.19 the phase distributions of <u> and Y<u'2> are com-
pared for a constant frequency of forcing (T=2.4 sec) and the Reynolds
numoers ranging from 3300 to 7500. The pnase difference between <u> and
/:;TZ; decreases with increasing e; the location of minimum in the

phnase difference approaches the wall at high values of the Reynolds
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nuzber.

The phase angle of /Z;TZ> is practically independent of the radial
position (Fiz.3.10). The phase-lag of /Z;TZ> behind pressure is very
ciose to that of /Z:TZ> in tne center of the pipe, put it does not de-
crease at larger r/h. The magnitude of thne phase-lag in /2;725 and

/é;jz; relative %o the pulsating velocity depends on the amplitude of
the velocity pulsations, but the radial distribution of the phase is

unaffected.

Tne qualitative difference in the phase behaviour of /<u'E> and

/<v’2) can be explained by considering the oudget of the turbulent en-

ergy (sce hinze, p.325). The rate of change in the intensity of the
longitudinal fluctuations (i.e. a(u'2>/ at) is governed by the produc-
tion term -<u'v'> 9<u>/ 9r, so that simultaneous existence of the oscil-
lating velocity gradient and Reynolds stress is necessary for the pro-
duction, as it was pointed out by Rotta (1962). The temporal change in
the phase-mean velocity gradient produces a most pronounced change in
/2:72; at the location where the product of the oscillating Reynolds

stress with 3<u>/ 9r attains maximum. The phase difference between <u)
2

and /<u'“> is thus minimal in the region of maximum production and oc-
curs approximately at r/R=0.7 at time-mean Re=z4000; at higher values of
Re the location of the minimum in the phase difference approaches the
wall. Once generated, the longitudinal velocity fluctuations are trans-
ferred accross the pipe by energy redistribution mechanisms, which are

connected to pressure fluctuations. The phase lag between <u> and
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Ihe radial velocity fluctuations do not extract energy directly
from the mean flow but rather from <u'2> through pressure redistribution
terms. Thus the phase-lag in /.2;72; is similar to the phase-lag of

) /2572; in the center of the pipe, out the pnase-lagz of /_Z;Tz; is inde-

pendent of radial location.

in addition to the pnase oehaviour of the RMS of the turbulent vel-
oz2ity fluctuations, the racial distrioution of tacir amplitudes was

eficcica as well., the dependencies of the dimensionless amplitudes of

/(u'2>. roramclized by the amplitudes of tne pulsating oulk velocity for
three periods of forcing, are plotted in Fig.3.17. 1ncreasing the fre-
guency of the pulsations results in higher dimensionless amplitudes of

/Z;TE;. 4 large change in the anplitude of tne pulxk velocity produces
a small growth in the amplitude of /;;TZ;. The data presented in
Fig.>.1b reflects a change of approximately 300» in tne amplitude of the
oulk velocity pulsations which lead to a cnange of 20» in the dimension-

less aapliitude of /(u'!>.

in order to check the non~harmonic benaviour of /<u'2> and /<v'2>
the ratio of the first two power spectral coefficients c(2 w)/c( w) was

calculated for the pnase averaged HM> values. lhe Cfirst coefficient

e ?m’_'m"’x AN .
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e{w) corresponds to the fundamental frequency of pulsations, while
c(2w) to its first harmonic. No significant frequency or radial depen-
dence of c(2w)/c(w) was observed. This ratio was about 18% for
U1/U=15$, and increased to c(2w)/c(w)=40% at U1/ﬁ=35$. The
non-harmonic behaviour of /;;TE; was similar. The phase dependence of
K:Tz; is becoming more harmonic when Re is increased. At Rez5800 and
Re=7500 c¢(2w )/c(w) is less than 5% at all radial locations. The con-
clusion thus can be made that the non-harmonic behaviour of the turbu-
lent characteristics at Re<4500 1is caused by the onset of the relaminar-

ization process at low instanteneous values of the bulk velocity.

3.3.2 Reynolds Stresses

Time averaged Reynolds stresses —u'v' which were measured by an
x-wire, are essentially independent of the flow pulsations (Fig.3.19),
as is+the case of the RMS values of turbulent velocity <fluctuations.
This conclusion was inferred earlier from the similarity of time mean
velocity profiles (Section 3.1). The fact that the time mean pressure
drop along the pipe is independent of forcing also indicates, that the

pulsations have nearly no effect on the mean Reynolds stresses,

The radial distribution of the oscillating part of the Reynolds
stresses for two amplitudes of pulsations is shown in Fig.3.20. The
measured values of <u'v'> were rendered dimensionless when divided by
the amplitude of the pulsations of u, which in turn were deduced from

the oscillatory component of the pressure drop. Normalized in that way,

LERERRC F APV DI



Page 00

the aaplitudes of the Reynolds stress appear to be independent of tne

amplitude of tne pulsating bulk velocity. walitatively, the radial

distribution of tac amplitude of <u'v'> resembles the time mean u'v' de-
pendence, botu Irow linearly with tne radius in the central region of
the pipe, but the pulsating <u'v'> attains its maximum value closer to

the wall, than the time mean Reynolds stresses,

The phase lag of <u'v'> behind pressure (Fig.3.21) is similar to
the phase-lag of VQZTZ; at comparable amplitudes and radial positions
{compare with Fig.3.106). The phase-lag of <u'v'> is minimal not far
from the wall, at 0.7<r/R<0.8; with the location of minimum depending
on the amplitude of the forecing. The resemblence between the radial
distribution of the phase-lag of VQZTE; and <u'v'> stems from the fact
that u'v' fluctuations can extract energy directly from the mean flow
through the production ternm TN <u>/ Ir (Hinze p.325). The minimum
in the radial distribution of the phase angle of <u'v'> is much less
pronounced than for the longitudinal velocity fluctuations, because of

the uniform distribution of both amplitude and phase angle orVQv'z>.

The Reynolds stresses, as the RMS values of velocity fluctuations,
are not changing harmonically 1in time. The "power spectrum™ of the
phase averaged <u'v'> was calculated, and the coefficients, correspond-
ing to the fundamental frequency of pulsations and its first harmonic,
were compared. Their ratio was found to be similar to that, obtained
for  Ku'®>, 1.a. about 205 when the amplitude of foroing was u,/Us208

and about 403 for u,/6-35$.
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3.3.3 Spectral analysis

Une of tue interesting questions, concerning turoulent pulsating
pipe flow, is the interaction of turbulence with the velocity oscilla-
tions generated by forcing. Cheng (1971), for example, states, that
there is a strong amplification of the turbulent fluctuations at the

frequency of the pulsations.

In order to check the spectral distribution of the energy of turbu-
lent fluctuations at frequencies corresponding to the frequency of the
imposed oscillations, the sampling period was increased to eight periods
of forcing. The data was acquired in the following way. The first
trigger pulse recognized by the computer initiated the record. Fronm
that point in time only every 8-th or 16-th data point was stored after
the corresponding phase-averaged value of the velocity was substracted
from it, ¢thus leaving only the fluctuating turbulent component of the
instanteneous velocity. One hundred and twenty eight (128) data points
were obtained for each period, giving a total of 1024 points per record.
The power spectra were calculated for each record and averaged over the

number of records used.

A log-log plot of the spectra at 9 radial locations 1is shown in
Fig.3.22° for unforced flow; and in Fig.3.22° and Fig.3.22° for foroing
at a period equal to T=z1.34 sec and at two amplitudes of osocillations

Ullﬁ;20$ and U‘i5:35$. The general shape of the spectra of the steady
and pulsating flows is very similar. PForoing produces a strong peak in
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tne spectrua &t the frequency of the pulsations in tne nonstationary
flow. 1in tne central region of the pipe even the second a2nd tne third
narmonic of the pulsating frequency are visible. Tnis confirmms, at the
first sight, the conclusion of Cheng about the increase of the turbulent
energy at the frzqguency of the pulsations. 710 check the matter further
the same type of aeasurment was repeated in laainar pulsating flow at
identical flow conditions; tne ensued spectra nad identical peaks at
the frequency of the pulsations and its harmonics. 3ince the intensity
of these spectral peaxks relative to the background was identical to the
intensity measured in turbulent flow and yet tne flow was laminar, error

in tne processing of data was suspected.

a8 explained in Section 2.5, the sampling frequency was calculated
oy tne computer in order, that 1024 or 2043 data points would be sampled
per cacn channel per period. Iln reality, however, the desired nuamber of
sampled data points per period was not precisely achieved. The reason
for the disarepancy stems from the fact that 11 cnannels were recorded
at a total sampling rate of approximately 15 Khz. 1Tnus, about 70 usec
elapscd between the consecutive data points while the resolution of the
clock being only 1 usec, resulted in a maximum possible error in the
sampling frequency of approximately 1.53. The sampled period might have
been either longer or shorter than the real period of pulsations, re-
sulting in a discontuinity at the end of each record. The absolute
value of the discontinuity was not large, and it could not be noticed
froa observing the velocity signature on a "Tektronix" screen, but its

periodicity caused the generation of the spectral peaks discussed in

© ARG W~
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conjunction with Fig.3.22 at the frequency of pulsations and its harmon-

ics.

examination of the low frequency spectra excluding the above menti-
oned spikes leads to the conclusion, that there is no significant inter-
action between the imposed oscillations and the turbulence. Thus the

conclusion of Cheng might be in error,

in order to obtain spectral information at higher frequencies, the
spectra of the axial and radial velocities during a single time period
(T=1.34 sec) were calculated and averaged over 100 cycles. The spectra
at two radial positions are shown in Fig.3.23: one on the center line
(F1g.3.23%) and one taken at r/Rs0.73 (Fig.3.23°). The lowest frequency
of the spectra corresponds to the frequency of the pulsations, i.e.

£=0.74 Hz.

The value of the leading coefficient of the axial velocity compo-
nent power spectrum which corresponds to the forcing frequency grows
witn increasing amplitude of forecing, but the rest of the spectrum {is
not influenced by pulsations. The changes at the frequency of pulsa-
tions are assumed to result from the expsrimental error discussed ear-
lier in the case of long time spectra. Turbulent energy is increasing
towards the wall, as expected; most of the turbulent energy is oonta-
ined in frequencies lower than 100 Hz; the value of power spectrum
coefficients at frequencies higher, than 500 Hz, is at least four orders

of magnitude below the coefficients corresponding to the energy contain-
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inz eddies, so tnat the sampling frequency of apout 1.5 nnz, used in the

experiment, is5 aiequate,

inz spectra in Fig.3.2% are plotted in log-loz coordinates. this
presentation 1is necessary because of the wide range of parameters, but
it conseals the relative contribution of different frequencies to the
total turbulent energy. The connection between the spectral coeffi-
cients c(f) and turbulent energy E may be presented in the following

form

P o
E:Ic(f)df:[f"c(f)d(logf) 3.2
0 —o
1t is clear from this presentation, that when logf is used instead of
frequency, the contribution to the total turbulent energy at the fre-
quency f is proportional to ffc(f). The Fig.3.23° gives the spectrum of
the turbulent energy of the longitudinal velocity fluctuations on the
center line of the pipe, as given in F13.3.23a, but instead of loge(fr)
the logaritha of the product f%c(f) is given on the ordinate. F13.3.st
presents the spectra of radial velocity fluctuations, calculated in the

same way.

1t can be seen from the Figure, that the main contribution to the
total turbulent energy of axial velocity is at frequencies corresponding
to a Strouhal number based on mean bulk velocity U and diameter of the
pipe D (StafD/U) whioh is of the order unity (Sts! at =55 Hz). The

frequency of energy containing eddies inoreases near the center of the

P
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pipe. 1a2  caaracteristic freguency cof tac =ner:y containing esdies in
tne racicl Civ:c%ion is apout Yo nr, and secas te oc loss gepengent on

racicl position.

wit: powmer spectrum c(f) known, dissipation spectruam tzc(f) and
dissipation integral frzc(f)df can be calculated. ‘Ine log-log plot of
dissipation spectrz on the center line of tne pipe for unforced flow and
for two amplitudes of forced pulsations at T=1.34 sec (U,/U:ZO; ang
U,/ﬁ:35p) is presented in £ig.3.25. The maximum dissipation region is
approximately at =150 Hz. The difference between the regions of energy
containing eddies and maximum dissipation is not very large, as can be
exyected for low neynolds numbers considered. The dissipation spectra
are practically uneffected oy pulsations, and %tne slight increase in tae
value of the dissipation integral with increasing results from changes

in spectra at the nigh frequency (f£>200 Hz).

The spectra on Figures 3.23 give information which is averaged over
the wnole period. 1t was mentioned earlier, nowever, that in the pul-
sating flow the turbulent activity is phase dependent. 1t was deciaed
tnerefore to divide each period into eight equal parts, and calculate
the spectrum for eacn part separately. tach record thus included 250
measured data points and thus no spectral information could be optained
about frequencies lower than 8/T=6 Hz. The spectral resolution, which
depends on the duration of the total record is also reduced by the sup-
division of the period, Figures 3.2"a and 3.2“b show three out of eight

possible spectral distributions at the initial pressure pnases of 90°,

AT II  #p
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120° and 270° i for two amplitudes of bulk velosity pulsations (135.5»
on Fi3.3.24° aits 35» On Fig.B.ZHD). 1he phase angles chosen snow tne
aaxinun deviation (500 and 2700) of tne short duration spectra from long
tine aver=a;sl spectrum wnicen also resembles the spectrum at pnase angle
!oo°. At large aaplitudes of pulsations, the difference between the
specral coefficients measured at $290° and 6=270° for a given frequen-
ey nay be as large as decade. It is intersting to note that effect of
pulsations on the spectra s most pronounced at high frequencies (20
Hz<£<100 Hz) rather than in the immediate neighbourhood of the forcing

frequency (i.e. at f~1 Hz).

To evaluate the influence of forcing on the energy containing ed-
dies same spectra were plotted once again in the coordinates log(f*c(f))
vs. log(f) (Figures 3.24c and 3.2”d). 1t transpires tnat in addition
to the effect on the amplitude of the turbulent fluctuations, the intro-
duction of forcing also effects the energy containing eddies, as it was
noticed from examining a single event in Section 3.3. At higher instan-
teneous Reynolds numbers (with a certain phase lag) the entire spectrum
seems to shift towards higher frequencies which are appropriate pernaps

to the instanteneous Reynolds number.

This behaviour is even more pronounced on the short duration dissi-
pation spectra, calculated from the power specotra and presented in
Fig.3.26. The values of the dissipation spectral coefficients differ by
two orders of magnitude at different initial phase angles. The region

of maximum dissipation also depends strongly on the phase angle,

o
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3.3.4 Dissipation time scale

The multiple spectra, presented in the previous Section, show that
the frequency of turbulent fluctuations is phase dependent. They can-
not, however, provide "instanteneous" information about frequency, but
rather an average over 1/8 of the period. An alternative way to obtain
phase locked information on the characteristic frequency of the turbu-
lent fluctuations 1is to calculate the ensamble averaged values of the

Eulerian dissipation time scale’fé, defined as

-l/t =¢Q du'/adt) /Zu'

(riinze, p.45). Although Townsend (1956) was very sceptical about the
phisical meaning of the so called dissipation parameters, they still may
serve as an indicator defining the most rapid turbulent fluctuations in

the flow.

The radial distribution of time averaged values or'?; for three am-
plitudes of pulsations at T=z1.34 sec is presented in F13.3.27‘. No sig-
nificant influence of pulsations can be noticed up to the maximum ampli-
tude used (i.e. U,/ﬁ' 30%). The averase';k attains a maxizmum on the
center line of the pipe. The obtained maximum value of ?; (about 400
Hz) supplies one more indication, that the sampling frequency chosen in
this investigation (about 1500 Hz) is quite adequate. The value of time

averaged ?; increases sharply with decreasing distance from the wall.
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The radial distribution of the amplitude of the oscillations in

<fE> (see F15.3.27b) resembles the distribution of the amplitude of

phase averaged velocity oscillations. In the central region of the pipe

the radial distribution of rs is approximately unifora, as is the case

for the amplitude of <u>, the difference occurs in the vicinity of wall,
vhere the reduction in the amplitude of rg is steeper. The amplitude of

oscillations in <tE> is roughly proportional to that of <ud>.

The radial distribution of the phase lag of <tE> behind the pres-

sure (Fig.3.27°) resembles that of ¢u(r), with the phase lag increasing

towards the wall. The phase difference between <u> and <tE> is about

° at all radial positions, and is practically independent of ampli-

20

tude.
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CHAPTER 4

D1SCUSSION AND THEORETICAL CONSIDERATIONS

4,1 The balance of forces in a pulsating flow

In a steady fully developed pipe flow there are two types of
forces, acting on every element of fluid and balancing one another:
pressure forces, resulting from favorable pressure gradient in the di-
rection of the flow, and shear forces, which are caused by friction on
the walls and oppose the motion. In the case of non-steady flow a third
force 1is added: an inertia force. At any instant, all three forces
have to be balanced, forming triangle of forces for each frequency in
the Fourier expansion. The leading term in the expansion is considered
and the presentation of (1,3) is used (e.g. the analysis refers to the

frequency of the pulsations only).

EQ.(1.10) may be rewritten in the following way:

<u> >

where <1> is the ensemble averaged pulsating part of the shear stress

+ o SN Ny
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<> =y Eg%i - p<utv'> h.2

Integrating Eq.(4.1) from the center-line to another radial position r

yields after some manipulation

T
19 ' ' = . 3<p> fILSli 4y
The integral on the left hand side represents an instantaneocus rate of
mass flow through the central region of the pipe up to the radial posi-
tion r, and will be designated further pQ(r). Making use of Eq.(1.3)
and considering the fundamental frequency only, the differential equa-

tion (4.3) reduces to an algebraic expression

-i¢_(r) 199, T e (r)
e

—_— 4.4
2 3x T

£q.(4.4), being a complex one, represents in fact two independent equa-
tions, for the real and for the imaginary part. When tne experimental
information about flow velocities and pressures is available, Eq.(4.4)
contains two unknown values: the amplitude of the shear stress‘t' and
its phase angle ¢T. Both values can thus be determined from equations

(4.4),

An alternative approach to Eq.(4.4) is to regard it as a vector
equation representing a balance among three vectors: asq‘(r)exp(-1¢q),
Fso.sap'/ax and T s(1,/r)exp(19, ), where ¢q and 6. represent the phase

angles of mass-flux and shear relative to the pressure. In turbulent

-
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flow the mass flux-lags behind the pressure by an angle ranging from 0°
to 90°, depending on frequency and mean Reynolds number (see Sections
3.2.2 and 3.2.4), The fact that the mass flux term on the left hand
side of Eq.(4.4) is multiplied by i means that an angle of 90° is added
to this phase angle in order that the mass flux term on the left hand
side of Eq.(4.4) will 1lead the pressure term. The following sketch

shows qualitatively the relevant vectors and phase angles.

It is seen from the sketch, that both amplitude 11 and phase angle 4’1’ of
the shear stress vector are critically dependent on the relative length
of P+ and 5 and on the phase angle between them, consequently even a re-
latively small error in one or both quantities which are measured exper-

imentally, can lead to a significant error in the shear stress vector.

In laminar pulsating flow the radial distribution of the shear
stress has been calculated theoretically (Uchida (1956)), and the solu-
tion for the amplitude of <t >, normalized by the length of the pressure
vector, is represented by a s0lid line in Fig.d4.! for a=9. (T=1.3
sec). The slope of the curve in the central region of the pipe is very
small, and it differs notably from zero only inside the Stokes layer.

This behaviour of the radial dependence of T '/r in the laminar flow

1 RN . -
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follows from the fact, that in the central region of the pipe the accel-
eration tera is practically in phase with pressure, and both terms opal-
ance one another. The viscous term becomes more important in the Stokes
layer, wnere the radial gradients in the amplitude and pnase of velocity
pulsations increase (Fig.3.¢ and rig.53.5). The increased amplitude of
the velocity oscillations renders a longer acceleration vector; the
changes 1in the velocity phase-lag increase the angle between the accel-
eration vector and the pressure vector; thus the shear stress term
which closes the force triangle increases. iiear the wall the amplitude
of velocity oscillations decreases causing the acceleration vector to
become shorter than the pressure, and the phase lag of the shear stress
behind the pressure tends approximately to HSO. The following sketch
shows qualitatively (but not to scale) the force triangles in laminar

flow at three radial locations: in the central region, in the Stokes

layer and at the wall. >
T -
> T
s X
-+ > < >
Lzl . o.0001 Lzl . o.026 1 Il 20,103
2
7| |p| r Pl
_ Stokes layer wall
center(r/R=0.24) (x/R=0.85) (r/R=1)

The relative length of the shear stress vector in laminar flow {is
small with the exception of the wall region and consequently the pres-
sure and acceleration are collinear and equal. This identity provides

an opportunity to check the consistency of the measurments and correct
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the pressure vector which in all probability contains the largest error.
The measured values of ; and i d€7r2 in tne central region of the pipe
in laminar flow were equated, and a coefficient of the correction for
the length of tne pressure vector was determined. This coefficient was
used to correct the length of the pressure vector in the turbulent flow
at otherwise identical parameters (i.e. Re, T, piston displacement).
The value of the corection coefficient was usually about 1,15, It is
worth noting here, that the shear stress teram appears in the form T/r.
This term does not vanish in the center of the pipe, contrary to the
snear stress itself, and therefore there is no way to correct the rela-
tive length of the other two experimental vectors using the known value

of T=0 in the center of the pipe.

The shear stresses calculated from Eq.(4.4) with tne aformentioned
correction factor for the pressure can be checked experimentally by com-
parison with the measured Reynolds stresses. Fig.4.1 represents the
calculated radial distribution of T,/D; normalized by the modulus of the
pressure vector }, as compared with the theoretically calculated laminar
distribution. Four different amplitudes of pulsations are shown in

Fig.4.1 for the period T=1.34 sec.

An identical way of normalization was used in Section 3.3.2 for the
radial distribution of the amplitudes of pulsations of Reynolds stresses
shown in Fig.3.20. The vector diagrams provide a reason for it. As {t
was mentioned in Section 3.2, the amplitude of velocity pulsations is

proportional to the amplitude of pressure for both laminar and turbulent
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flows, as long as this amplitude is not too high, ¢u is practically in-
dependent of amplitude. This implies, that the force triangles for dif-
ferent amplitudes of pulsations at a constant frequency are similar, and
thus the amplitude of pulsations of the shear stress is also proportion-

al to the pressure.

It is seen from Fig.4.1, that this way of normalization 1leads to
radial distribution of T, vwhich collapse fairly well on the same curve
provided the very large amplitudes of forcing are excluded (01/6;35$).

The comparison of the measured Reynolds stress with T. callculated ac=-

1
cording to Eq.(4.4) is fairly satisfactory. In the central region of
the pipe 9<u>/ 3r= 0 (see Section 3.2.1), thus <t >/p =+<u'v*>, yet the

measured <u'v'>, are consistently below T The maximum discrepancy

1'
however, is less than 20% (Fig.4.1) thus giving an estimate of the error
in the use of Eq.(4.,4). If one does not correct the pressure vector the
discrepancy between the measured and calculated T incresases slightly

without affecting the qualitative results.

Fig.4.2 presents the radial distribution of the amplitude of the
pulsations of the shear stress, normalized in the same way as in the
previous Figure, for four different frequencies. The relative lengths
of the shear stress vector and of the pressure vector are obviously
strongly dependent on frequency. At low frequency the length of : at
the wall nearly equals to that of i. as it is in steady flow, and the
contribution of the acceleration term is manifested mainly in the phase

shift Dbetween "F and -F it is natural to assume, that at frequencies
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lower than the ones measured this phase laz eventually vanisnes, and tne
behavicur of tne pulsating turbulent pipe flow aoes not differ from tne
steady flow. iae lengtn of ? relative to tne amplitude of the pressure
pulsations Jecreases with increasing frequency, and the behaviour of the
flow in the central region of the pipe resembles the laminar case, where

the influence of the shear stress is negligible.

It should be noted however that the amplitude of the shear stress
does not change notably witn frequency wnen normalized by the flow rate
ampl itude Q1 rather than the pressure. This is also the case for the
RMS values of the longitudinal velocity oscillations (see Fig.3.17). 1t
may be concluded that the oscillations in shear stress and RMS values of

velocity fluctuations are functions of the oscillating Reynolds number.

There exists a phase difference between the oscillations in mass
flux and in shear stress. The phase lag of <7t >¢T as calculated from
the £q.(4.4), shows only slight dependence on amplitude (Fig.4.3), with
the possible exception at very high amplitude of forcing (U1IUE35$). in
the latter case ¢T increases notably. The dependence of the phase angle
on frequency is considerable (Fig. 4.4). The phase angle ¢T calculated
from Eq.(4.4) and the angle th which was deduced from the measured Re-
ynolds stresses are in very good agreement (Fig.4.3). The difference
between the two quantities is less than 100. The phase angle between
the pressure and the shear stress increases with increasing frequency.
QT decreases near the wall, this decrease is much more pronounced at

higher frequencies.
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The following sketch (which can not be drawn to scale) shows rela-
tive length and directions of the relevant vectors at a given radial lo-
cation (r/R=0.0!) for three frequencies (all vector moduli are normal-
ized by the modulus of 3), as calculated from experimental data in ac-

cordance with Eq.(4.4):

T=0.78sec . T=1.34sec T=4.4 ses
0.34 0.50 Eg;
l\isz.s" '1102.2" ;
\\ ~ 1
1.32 . 1.21 0.86 [}
] g 58.5 *
o 35.9
4.4 77’ _,, 0.57 -
T T

Increasing the frequency results in smaller phase angles between the
pressure and the acceleration vector. The length of E relative to the
pressure decreases with increasing frequency (in analogy to the behavi-
our of oq\ o) in laminar flow (Fig.2.2)), but the product mQ' which
corresponds the the acceleration vector increases with increasing fre-
quency. Thus, while examining the instanteneous force balance, T oeing
related to the acceleration should be compared with a characteristic wQ
term, vwhile in examining the influence of forcing on the turbulent in-
tensities or Reynolds stress should be compared with a, characteristic
amplitude of velocity and hence with 01. The phase lag of ? behind 3

increases with frequency, as shown in Fig.4.4.

At a given radial position there is no practical difference betwsen
<T >/pand -<u'v'>. The phase angle ¢, of < T> may thus be considered to

be equal to the phase angle of the Reynolds stresses. The phase lag of
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tne heynolds stresses behind tne mass flux taus ranges from nearly zero
at low frequencies to approximately 00° at T=0.70 sec. at nigh frequen-
cies Reynolds stress is nearly in antiphase with tne acceleration vec-
tor. Jsince the radial dependence of the phase angle of the longitudinal
velocity fluctuations is similar to the dependence of the Reynolds
stresses (because of production term), it follows from the force trian-
zles, that at high frequencles the acceleration is associated with re-
duction in the turbulent activity. This fact is widely recognized 1in
the 1literature (e.g. Narasimha and Sreenivasan (197G)) and a causality
of relaminarisation by acceleration was suggested, but the present ex-

perimental results suggest a different interpretation.

At long periods of pulsations (Tzd.U8 sec), the rate of change of
the bulk velocity is small enough for the turbulent structure to accomo-
date itself to the instanteneons value of the phase-locked average velo-
city distripbution. The changes in the turbulent characteristics of the
flow are therefore in phase with the mass flux and with the pulsating
Reynolds number. The situation resembles laminar pulsating pipe flow,
where at a<!, the velocity at any instant has a Poiseuille distribution
corresponding to the instanteneous value of the pressure gradient. The
period of pulsations for which the turbulent structure responds to the
instanteneous mean flow (Tsd.5 sec) is still very short in terms of the
frequency parameter (os=l.9 rather than 1). Thus the characteristic
responce time of turbulent fluctuations to a change in mean flow, is
nuch shorter than the time needed for the laminar flow to accomodate it-

self to the changing pressure gradient.
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when the frequency of pulsations increases, the phase lag of the
mass flux relative to the pressure tends to 900, and all tnree vectors
in the force triangle tend to be collinear. This implies that the Rey-
nolds stresses lag behind the mass flux by 90° and cannont exceed this
angle under any condition. At high enough frequencies the turbulent ac-
tivity is minimum when the acceleration is maximum because the relative
contribution of the shear stresses to the total balance of forces decre-
ases. The "laminarizing" effect of the acceleration is thus obtained in

the limiting case of very rapid oscillations.

4.2 The Eddy Viscosity Model in the Time Dependent Flow

In pulsating pipe flow amplitudes and phase angles of the oscillat-
ing pressure, velocity and shear stress are mutually dependent.
Therefore the qualitative difference in the radial distribution of ¢u
in laminar and turbulent flows (Fig.3.5) results from the different be-
haviour of the oscillating part of the shear stress in both flows. The
oscillating parts of the laminar and turbulent velocity profiles at high
values of « are vaguely similar, suggesting that a proper use of an eddy
viscosity model may provide a qualitative answer for the behaviour of
the oscillating turbulent flow, including in particular the vastly dif-
ferent radial distrubution of the phase. The eddy viscosity model has
to be modified in order to provide a qualitatively correct description

of the time dependent turbulent flow.
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The suggested expression of the kinematic eddy viscosity for the
time dependent portion of the flow is based on the steady flow model of
Van-Driest (1950) with the correction of the wake function of Coles
(1954), as proposed by Yahalom-Dimant (1974). 1lhe kinematic eddy vis-

cosity eo for steady flow is given by

_ (x/R)u?
€o(r) = £537%%t 4.5

The velocity gradient du/dp is composed of two parts, the first repre-

sented by Van-Driest model:

du (x/R)u?/v

1,
ar (R-tju 4.6
Lo [1+k2 ED)u? T (1-exp(- :

for which the empirical constants are: A*=26; k=0.4; and the second

part is the wake correction for the central region of the pipe:

3u2 T L r
¥ =3 [1-exp(-2Ru,/VA )sin(w(1- ﬁﬂ] 4.7

where the additional empirical constant Il was chosen to be II=1.02.

The eddy viscosity for the time dependent part of the flow is dif-
ferent from that for the steady flow. Following Maruyama (1974) and
using the Prandtl's mixing length approach, the expressions for the

shear stress and the eddy viscosity are:

- u | 2 du
T=pe, 375 € =pb I 4.8
- o iR s
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where® is tae mixing lengta. introaucing tne decomposition for tne
steady anc time dependent parts of the pnase zveragea velocity u=ﬁk<u>,
substituting it into Eq.(4.0), and neglecting terms of second order
yields:

2 du <w

_ 02¢9Uy2 _ 02 3U.2
T=pR (ar) = pL (5;0 + 2pk 3F ar 4.9

thus implying for the eddy viscosity of the oscillating flow e1

- 2_3_{1__ - 9T a
el = 2p8 AT - 250 YCTELD) 4,9

The simple model of Prandtl which uses a constant length scale, glves

for the time dependent part of the shear stress an eddy exchange coeffi-

cient q which is twice the conventional, steady eddy viscosity.

For a more complex model, like the one given in equations (4.5)
through (4.7), the relation between €, and €, is not as simple. 1In
order to obtain the eddy viscosity which represents the dependence of ?
the shear stress on the velocity profile, the radial distributions of

the velocity gradient and of the shear stress was calculated for two !

slightly different values of the friction velocity u, from equations
(4,6) and (4.7). The eddy viscosity for the oscillating flow was then

calculated following (u.9‘) from the equation:

(r/R)Au? .
el = W uo‘o ; L]
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Fig.4.5 presents so calculated radial distripution of the oscillating

cdey viscosity as compared to tnhe steady one,

It was tacitly assumed in this derivation, that the shear stress is
corresponding to the instantaneous value of the local velocity gradient,
irrelevant to the rate of change of the phase-averaged flow. The care-
full examination of the experimental data however reveals, that this is
not always true. From the Eq.(4.2) and the definition of the eddy vis-

cosity one obtaines
(e, -v) 5 = —curve> 4.1
1 T .11

The phase angle of the Reynolds stresses is thus related to the velocity
gradient 3<u>/9r. With the radial distribution of both amplitude u'(r)
and phase angle of velocity oscillations ¢u(r) Known, the time depen-

dent velocity gradient is:

du, (r) 3 (r) i(wt+d (1))
S [ i ) —f— e ’ 4.12

The phase angle of 9<u/dr may thus be calculated from Eq.(4.12). The
experimentally observed radial dependencies of u'(r) and ¢u(r). as pre-
sented in Section 3.2, are very slowly varying functions of r with the
exception of ¢the wall area, thus the differentiation of these curves
will inevitably cause a very large experimental error. Consequently,
the accurate calculation of the eddy viscosity for the oscillating part

of the flow from the experimentally measured values of <t > and 9 <ud/dr

o kNI 5
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fezos lapossionle in practice.

inere exists, nowever, 3 point, at whicn the pnase lag ¢u(r) at-
tains a ainimum, so that a¢u(r)/ar=0 at this radial position, and the
pnase angles of 093<u>/dr and <u> are identical (£q.(4.12)). The experi-
rnental data of Section 3.3.2 show a difference in phases between <u> and
<u'v*> at this, as well as at other radial positions. 1t follows tnere-
fore from Eq.(4.11), that the turbulent part of the eddy viscosity for
the time dependent flow has to be a complex function which introduces a

phase shift between 3<u>/r and <u'v'>,

The complex nature of the eddy viscosity for the oscillating flow
can oe related to the finite relaxation time in turbulent flows (Nee and
Kovasznay (1y0y), Narasimha and Prabhu (1972)). The concept of the re-
laxation time refers to the time period necessary for the turbulent
structure to adjust itself to a step-function change in the mean flow.
Nee and Kovasznay and Prabhu and Narasimha (1972) proposed model equa-
tions for calculating the shear stress in a flow with non-stationary
mean values, based on the diffusion equation. A different aproach will
be taken here. The equation relating the shear stress to velocity gra-
dfent is modified in order to include a responce time of the Reynolds
stress:

a<u> -8 <u'v'>

<u'v'> = (el-v) 3T T3 4,13

The second term on the right hand side of the Eq.(4.13) represents the
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"inertia" of the Reynolds astress, which wmay be large whenever the
changes in <u'v'> are rapid in comparison witn characteristic time 6 ,
but vanishes for infinitely slow processes. Substituting into the
Eq.(4.13) the presentation (1.3) for the time dependent part of the Rey-

nolds stress <u'v'>=(u'v')1exp(ﬂn t+ ¢uv)’ one obtains:

€,.-V €.,-V

1 I<u> 1 -iarctg(w®) J<u>
ty!'> = = —_—
<u'v'> T+ 100 57 e ™ 4,14
V1+0202
which gives an expresasion for the oscillating eddy viscosity:
€,-V .
El = v+ 1 e-1arctg(we) 4,15
V1+0202

£9.(4.15) indicates that the argument of the complex eddy viscosi-
ty, as well as its' absolute value are frequency dependent. At high
frequencies relative to the relaxation time 6 ( w9>>1) the absolute
value of the eddy viscosity for the oscillating flow decreases, and the
Reynolds stresses become independent of the phase angle. Thus, the tur-
bulence 1is "frozen" and depends on the mean flow only. The pulsations
are governed by the molecular viscosity v only, and are in this sense

laminar, while the mean flow is fully turbulent,

As mentioned earlier, the phase difference between <u'v'> and
a<u>/ 9r is known accurately at one radial position only, where the
phase of the velocity gradient equals to the phase of the velocity 1it-

self, The experimentally measured ¢u at T=1,34 sec and U‘/6320$ at-
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tains mininua at r/R=0.72 (Ffig.3.10), and the phase difference between
the velocity and the Reynolds stress is at this radial position 30°
(Fig.3.21), Tne relaxation time 8 , obtained from the Eq.(4.15) is
therefore 8 =( n/6)/(2 n/T)=0.12 sec. Although the relaxation time
should in general depend on the radial position, it is convenient to as-
sume it to be constant across the pipe. The relaxation time therefore
is a universal constant for a given mean Reynolds number. Narasimha and
Prahbu (1972) used a similar approach to calculate the influence of the
finite relaxation time on the development of the turbulent wake in res-
ponce to a steep change in pressure gradient. Neglecting the dependence
of the relaxation time on the transverse coordinate proved in their case
to have no significant effect on the results of the calculations nor on

the agreement with experimental results.

Following equation (4.15), one may define a critical frequency of
pulsations fcr= “cr/e m=1/216 =1,3 Bz, At w < Wop the modulus of E' is
practically independent of frequency and equals to the value of an eddy
exchange coefficient for very slow pilsations. At “ﬂ”cr the oscillat-
ing eddy viscosity decreases to 1/Y2 of its value at w* 0. When w >1/0,
and (w@ )2>>l, IE'lﬂ/w ,» and thus the amplitude of oscillations in
shear stress decreases rapidly with increasing frequency for a given
value of 3<uw>/ 3r. The corresponding critical period of the pulsations
is in this case Tcr=1/r°r=0.75 sec. For the turbulent structure to be-
come frozen, 1{.e. for the oscillating eddy viscosity to vanish, the
frequency of pulsations has to be much higher than rcr, as may be de-

duced from Eq.(4.15). On the other hand, even at f(fcr the osoillating
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eddy viscosity still introduces a significant phase angle between <u'v'>
and 9<u>/ 9r, thus influencing on the total force palance in the oscil-

lating part of the flow,

Ramaparian and Tu (1980) used a eriterion, proposed by Rao et al
(1971); Laufer and Badri Narayanan (1971) for tne characteristic res-
ponce time in a turbulent boundary layer U6 / §=5, in order to distin-
guish slow pulsations from rapid ones. The adaptation of thne criterion
to the pipe flow required that the boundary layer tnickness is replaced
oy a diameter D of the pipe. The direct adaptation of results obtained
in the boundary layer to a pipe flow seems questionable, and the radius
is probably a better substitute for §, than D. Still, the use of the
apovementioned criterion for the flow parameters, used in the present
invesigation, gives a characteristic time 0=50/u=0.00 sec, which is in
fair agreement whithin an order of magnitude with the estimated value of

8=0.12 sec mentioned earlier. Ramaparian and Tu concluded that the
turbulent structure is independent of the phase angle at f~ rcr' yet 1in
the present investigation experimental results and model considerations
indicate, that much higher frequencies are necessary in order to
"freeze®™ the turbulence, The characteristic time 9, when calculated
from the criterion 0=5D/U, decreases with increasing Re, thus the phase
shift between the velocity and the turbulent structure has to decrease
with increasing time-mean bulk velocity. The Reynolds number dependence
of the phase shift between <u> and <u'2> (Fig.B.ISb) confirms this con-

clusion.
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It is intersting to note that the empirical relation of Mizushina
et al (1973%) (£q.(1.12) leads in our case to the same value of Tcr=°'75
sec. These authors also referred to the paper of Rao et al (1971);
their conclusion is however opposite to the results opbtained in the pre-
sent work: Mizushina et al found that for T>Tcr the pulsations do not
effect the turbulent structure, and for very rapid pulsations (T<Tcr)
turpulent intensities become phase dependent. This conclusion contrad-
icts to the physical sense and experimental results and seems to be

error.

The eddy viscosity calculated from the Eqs.(4.5) to (4.7), (4.10)
and (4.15), was substituted into the Navier-Stokes equation for the os-

cillatory part of the flow to give:

. 1 3<p> 9 - >
o> = - LB L L2 2 52 s

with boundary conditions:

<u> _ . _
ar |r=0 ~ 03 W R = 0

Eq.(4.16) was solved numerically using an implicit finite difference

scheme by the Gaussian elimination method (Chow (1979), p.TH).
The results of the calculations are presented in Fig.d4.6, showing

the radial distribution of the amplitudes and phase angles of the oscil-

lations in velocity and shear stress. The calculations were performed
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for ocan he=d4Cud and T=1.0 sec. A qualitative agreeaent witn the exper-
inental results was acnieved in tnis way. Tne calculated pnase lag of
tae velocity oeinind the pressure behaves as tane experimentally observed.
inc calculated anzle slightly decreases with the increasing distance
from the center line, then increases near the wall., 1t should be noted
that tue efforts to use the real value of the oscillating eddy viscosity
resulted in the calculated radial distribution of ¢u which resembled

¢u in laminar flow, and decreased monotonically with increasing r/R.

In the immediate proximity of the wall the rate of change of
¢u with radius decreases sharply. The comparison of the ¢T which was
calculated from the experimental data according to Eq.(4.4) and shown in
Fig.4.4, with ¢u at the same large radial location (snown in Fig.3.5)
reveals, that the phase difference between them is small. The turbulent
(complex) part of the eddy viscosity being negligiole in this region,
the assumption can be made that<t> has to be in phase with 3<uw/ jr,
tnus the phase angle gradient a¢u(r)/ ar has to be small near the wall
as it follows from Eq.(4.12). The behaviour of ¢,(r) in the vicinity
of wall calculated numerically seems therefore reasonable, but no direct

experimental data is available in this region.

The calculated values of both ¢u(r) and ul(r) differ from the ex-
perimentally measured angles, implying that the theoretical model is not
sopnisticated enough to provide an exact balance between viscous, iner-
tia and pressure forces, and perhaps is not valid for the low Reynolds

number used.
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CHAPTER 5

CONCLUS1O0NS

The pulsating flow in pipe was investigated experimentally.
Heasurments were carried out in fully developed laminar and turbulent
flows consecutively while all other flow parameters were kept constant;
enabling a detailed comparison between the laminar and turbulent flows
at otherwise identical conditions. Most measurments were taken at a
mean Re=zU4000, for the periods of pulsations from 0.5 sec to 5 sec cor-

responding to a dimensionless frequency parameter 5<u=R¢w7v<15.

By considering the fundamental forcing frequency only, the regular
time-dependent component of the flow parameters is represented by the
radial distributions of amplitude and phase-angle of the oscillations.
1t seems, however, interesting and possible to expand the analysis to
include higher harmonics, which are important whenever turbulence is
coAsidered. The restriction of the analysis to the fundamental frequen-
cy made it possible to represent the balance between the inertia, pres-
sure and shear forces in pulsating flow by a vector triangle. The vec-

tor approach is helpful in understanding the physical process at hand.

The time mean properties of the flow were found to be practically

indpendent of pulsations in both laminar and turbulent regimes. A small

AT M i N,
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increase in tne turoulent energy at the nigr frequency enu of tine spec=
tru: was ocscorved at relatively aigh amplituces ot forcinz., &0 accumu-
lation of the turbulent enerzy at, or near tne frequency of pulsations

vas ooserved in tnis investigation.

ine theoretical analysis of the fully developed, laaminar, pulsating
pipe flow provides a good estimate for the measured quantities. The
theory describing tne laminar pulsating flow in the entrance region of
the pipe (Atabek and Cheng (1561)) which uses z linear approximation for
tne inertial term in equation of motion underestimates tne importance of

tnis region in comparison with tne experimental results.

The dependence of the bulk velocity oscillations on pressure was
found ¢to oe similar in laainar and turbulent pulsating flows. The am-
plituce of the bulk velocity pulsations, depends linearly on tne pres-
sure 1in both flow-regimes; so that equal amplitudes of pressure pulsa-
tions, result in nearly identical amplitudes of velocity regardless of
the flow reginme,. The pnase-lag of the bulk velocity relative to the
pressure is different in laminar and in turbulent flows, the phase lag
in the turbulent flow being usually notably smaller tnan in the corres-
ponding laminar flow. The radial dependence of tne aampliitude of the
velocity oscillations was also found to be different in laminar and tur-
oulent flows. 1In laminar flow, the maximum amplitude of the velocity
oscillations occurs in the Stokes layer, resulting in an M-like shape of
velocity profile. 1I1n the turbulent flow the amplitude of velocity os-

cillations decreases monotonically from the center towards tne wall pro-
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vided that tiz siccous sublayer is thinner than the oStokes layer. At
rirn frequoney oif foreing in tne turoulent flow rejioe, wnen tne Stokes
layer is thinrer ta.n the viscous sublayer, the radiisl distrioution of
tne anmplitudes of tne velocity pulsations resmoles tne distribution oo-
served in the laminar flow. The radial distrioution of the phase angle
Ou’ changes significantly when the flow regime changes from laminar to
turoulent. 1n the laminar flow, ¢u is approximately 900 in the central
region of the pipe at ail frequencies considered, and decreases to about
u5° near the wall. 1n turbulent flow, ¢u is smaller in the center than
in the corresponding laminar case, and increases with increasing fre-
quency. At all frequencies considered, the phase angle, ¢u' in turbu-

lent flow is higher near the wall of the pipe than near the center, in

contrast to the distribution of ¢u in the laminar flow.

The turbulent structure in pulsating pipe flow was found to be
phase dependent. The amplitude of the oscillations of longitudinal and
radial velocity fluctuations, as well as the Reynolds stress, correspond
roughly ¢o the ampiitude of pulsations of the bulk velocity. The angle
between the intensity of the longitudinal component of the velocity
fluctuations and the pressure attaines a minimum in the region where
most turbulent energy is produced and increases towards the center line.
The radial distribution of phase of the Reynolds stresses resembled that
of the longitudinal velocity fluctuations, but the minimum is less pro-
nounced. The phase lag of the radial velocity fluctuations is uniform
acoross the pipe, and approximately equals to the phase angle of longi-

tudinal velocity fluctuations in the center of the pipe. The phase lag
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of the turbulent quantities behind the velocity of forcing increases
with increasing frequency from zero to about 90°. At high frequencies,
the turbulent activity reduces to a minimum whenever the acceleration is
high, the phase lag between the two leads to the suggestion that the
turbulent structure needs time to accomodate itself to the everchanging
mean flow, thus revealing properties of "memory". Measurments of phase
between Reynolds stress and velocity oscillations at high frequency, en-
abled evaluation of a characteristic responce-time of a turbulent struc-
ture. This characteristic time was used in developing an eddy viscosity
model for the oscillating part of the turbulent pulsating pipe flow.
The model gave an expression for a complex eddy viscosity for the
time~-dependent component of the flow, for which both modulus and argu-
ment are frequency dependent. The argument of the eddy viscosity
differs from zero at relatively low frequencies, and tends to 90° with
decreasing period of pulsations. The modulus of the oscillating eddy
viscosity 4is independent of frequency whenever the period of pulsations
is longer than the relaxation time of the turbulence, but decreases at
higher frequencies. The relaxation time of the turbulent structure was

evaluated from a single point.

The dependence of the eddy viscosity on the frequency leads to the
suggestion that for a sufficiently high frequencies the modulus of the
eddy viscosity vanishes, and the turbulent structure becomes independent
of forcing. The turbulence therefore becomes "frosen”, and the oscil-
lating part of the flow may be considered laminar although the mean flow

is turbulent. These high frequencies could not be achieved in the pre-
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sent experimental setup.

Flow analysis notwithstanding, the responce of the facility, con-
sisting of a valvless piston pump, a large settling chamber and straight
smooth pipe, to a periodic change in the volume of the settling chamber,
was analysed theoretically and experimentally. 1t was found that for a
given amplitude of oscillations in volume the resulting pressure oscil-
lations depend on frequency. A maximum responce of the system to oscil-
lations in volume occurs in both laminar and turbulent flows at approxi-
mately identical frequencies. The resonance type of behaviour of the
pressure oscillations is caused by the phase relation between the pulsa-
tions in the flow rate and pressure for the specific facility. The in-
fluence of the finite sound velocity on the linearity of the pressure
distribution along the pipe was investigated as well and a qualitative
criterion was obtained for the range of frequencies at which a fully de-

veloped flow may be regarded to be independent of the axial coordinate.
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In  Turbulent Shear Flows 2, edited by Brauibury o' 1. Selected Papers
rrom the Second international Sympocsium on lurbulent Shear Flows, lmper- .
tal tollege London, July 1979, Springer-Verlas Berlin 1980,
Z. Furtner Observations on Transition 1in a Vipe. In Laminar-Turbulent
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tember 1979, Springer-Verlag Berliin 14380, :
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1. The Effects of Heynolds Number and Pressure tradient on Lne Transitional
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